




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省洮南市中考数学真题分类(勾股定理)汇编定向测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形.若AB=3cm,则阴影部分的面积为()A.1cm2 B.2cm2 C.cm2 D.cm22、如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.9 B.8 C.27 D.453、勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(
)A. B. C. D.4、如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是(
)A.6 B.8 C.9 D.155、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使△ABC为直角三角形的概率是(
)A. B. C. D.6、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(
)A.0.7米 B.1.5米 C.2.2米 D.2.4米7、如图,在△ABC中,∠BAC=90°,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为(
)A.5 B.9 C.16 D.25第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、已知,在中,,,,则的面积为__.2、图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为_____cm.3、我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,它高出水面1尺(即BC=1尺).如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处,问水的深度是多少?则水深DE为_____尺.4、一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,水的深度(AB)为________米5、如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为________.6、已知一直角三角形的两条直角边分别为6cm、8cm,则此直角三角形斜边上的高为____.7、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.8、如图所示,数轴上点A所表示的数为_______.三、解答题(7小题,每小题10分,共计70分)1、如图,中,,,是边上一点,且,若.求的长.2、已知:如图,四边形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的长;(2)求四边形ABCD的面积.3、在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B.此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?4、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.5、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?6、《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”(注:1步=5尺)译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,问绳索有多长.”7、如图,AD是△ABC的中线,DE⊥AC于点E,DF是△ABD的中线,且CE=2,DE=4,AE=8.(1)求证:;(2)求DF的长.-参考答案-一、单选题1、D【解析】【分析】由菱形的性质得到∠FCO=∠ECO,进而证明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面积为2,最后由阴影部分的面积=S菱形AECF解题.【详解】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AE•BC=2.∴阴影部分的面积=S菱形AECF=cm2.故选:D.【考点】本题考查菱形的性质、勾股定理、含30°直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键.2、A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可.【详解】∵正方形A、B、C的面积依次为2、4、3,∴根据图形得:2+4=x−3.解得:x=9.故选A.【考点】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键.3、B【解析】【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【考点】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.4、D【解析】【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.【详解】解:如图,将台阶展开,因为AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以蚂蚁爬行的最短线路为15.故选:D.【考点】本题考查了勾股定理的应用,掌握勾股定理的应用并能得出平面展开图是解题的关键.5、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【详解】解:如图,,,,均可与点和组成直角三角形.,故选:C.【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).6、C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.【考点】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.7、D【解析】【分析】设,根据勾股定理可得,即可求解.【详解】解:设,根据勾股定理可得,即两个正方形的面积和为25故选:D【考点】本题考查了勾股定理,掌握勾股定理是解题的关键.二、填空题1、2或14#14或2【解析】【分析】过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是钝角三角形时,②△ABC是锐角三角形时,分别求出AC的长,即可求解.【详解】解:过点作边的高,中,,,,在中,,,①是钝角三角形时,,;②是锐角三角形时,,,故答案为:2或14.【考点】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想.2、(3+3).【解析】【分析】要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.【详解】如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为(3+3).【考点】本题考查了平面展开-最短路径问题,关键是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解题.3、12【解析】【分析】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理列方程,解出h即可.【详解】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理,得(h+1)2-h2=52解得h=12,∴水深为12尺,故答案是:12.【考点】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键.4、8【解析】【分析】先设水深x米,则AB=x,则有BD=AD+AB=x+2,由题条件有BD=BC=x+2,又根据芦节直立水面可知BD⊥AC,则在直角△ABC中,利用勾股定理即可求出x.【详解】解:设水深x米,则AB=x,则有:BD=AD+AB=x+2,即有:BD=BC=x+2,根据芦节直立水面,可知BD⊥AC,且AC=6,则在直角△ABC中:,即:,解得x=8,即水深8米,故答案为8.【考点】本题考查了勾股定理的应用,从现实图形中抽象出勾股定理这一模型是解答本题的关键.5、2.5m【解析】【详解】设木棒的长为xm,根据勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的长为2.5m.故答案为2.5m.6、4.8cm.【解析】【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【详解】∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10(cm),设斜边上的高为h,则直角三角形的面积为×6×8=×10h,解得:h=4.8cm,这个直角三角形斜边上的高为4.8cm.故答案为4.8cm.【考点】此题考查勾股定理,解题关键在于列出方程.7、0.8【解析】【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可.【详解】解:在Rt△ABO中,根据勾股定理知,A1O==4(m),在Rt△ABO中,由题意可得:BO=1.4(m),根据勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案为0.8.【考点】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.8、【解析】【分析】根据数轴上点的特点和相关线段的长,结合勾股定理求出斜边长,即可求出-1和A之间的线段的长,即可知A所表示的数.【详解】图中直角三角形的两直角边为1,2,所以斜边长为,那么-1和A之间的距离为,那么数轴上点A所表示的数为:.故答案为:.【考点】本题考查实数与数轴之间的对应关系以及勾股定理,利用勾股定理求出直角三角形的斜边的长是解答本题的关键.三、解答题1、AC2=CE2+AE2=102+24∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能赶回巢中.【考点】本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度.2.2【解析】【分析】过点作于点,则,,结合可得出,进而可得出,在中,利用勾股定理可求出的长,即,结合可求出的长.【详解】解:过点作于点,如图所示.,,,.,,.在中,∵,,即,,.又,,.【考点】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在中,利用勾股定理求出的长是解题的关键.2、(1)BD=20;(2)S四边形ABCD=246.【解析】【分析】(1)由∠A=90°,AD=12,AB=16,利用勾股定理:BD2=AD2+AB2,从而可得答案;(2)利用勾股定理的逆定理证明:∠CDB=90°,再由四边形的面积等于两个直角三角形的面积之和可得答案.【详解】解:(1)∵∠A=90°,AD=12,AB=16,∴BD2=AD2+AB2,∴BD2=122+162,∴BD=20;(2)∵BD2+CD2=202+152=625,CB2=252=625,∴BD2+CD2=CB2,∴∠CDB=90°,∴S四边形ABCD=SRt△ABD+SRt△CBD,=246.【考点】本题考查的是勾股定理与勾股定理的逆定理的应用,掌握以上知识是解题的关键.3、第二艘搜救艇的航行方向是北偏西50度.【解析】【分析】根据题意求出OA、OB,根据勾股定理的逆定理求出∠AOB=90°,即可得出答案.【详解】解:根据题意得:OA=16海里/时×1.5小时=24海里;OB=12海里/时×1.5小时=18海里,∵OB2+OA2=242+182=900,AB2=302=900,∴OB2+OA2=AB2,∴∠AOB=90°,∵艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A的前进,∴∠BOD=50°,即第二艘搜救艇的航行方向是北偏西50度.【考点】本题考查了方向角,勾股定理的逆定理的应用,能熟记定理的内容是解此题的关键,注意:如果三角形两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.4、84.【解析】【详解】解:作AD⊥BC于D,如图所示:设BD=x,则.
在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,
解之得:.
∴.
∴.5、速度为3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工地用水电合同范本
- 超市代理合同范本
- 房屋网络出售合同范本
- 合租档口合同范本
- 回扣采购汽车合同范本
- 工厂培训学徒合同范本
- 河南装饰设计合同范本
- 关于纸盒购销合同范本
- 2025年芜湖市沈巷中心小学顶岗教师招聘备考练习试题及答案解析
- 防水购销合同范本
- 特警业务知识考试题库200题(含各题型)
- 热压机说明书范文
- GB/T 39616-2020卫星导航定位基准站网络实时动态测量(RTK)规范
- GB/T 3620.1-2007钛及钛合金牌号和化学成分
- GB/T 19519-2014架空线路绝缘子标称电压高于1 000 V交流系统用悬垂和耐张复合绝缘子定义、试验方法及接收准则
- 计算机网络技术论文(优秀6篇)
- 化学史课件讲课教案
- 心率与高血压培训课件
- 旅游客源国地区概况(第三版)第03章亚洲客源国概况(下)
- 智慧审计综合管理平台解决方案
- 宝钢产品质量证明书模板
评论
0/150
提交评论