版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级数学下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、小明从家出发向正北方向走了150m,接着向正东方向走到离家直线距离为250m远的地方,那么小明向正东方向走的路程是()A.250m B.200m C.150m D.100m2、下列运算中,正确的是(
)A. B.C. D.3、如图,在矩形纸片中,,,点是边上的一点,将沿所在的直线折叠,使点落在上的点处,则的长是(
)A.2 B.3 C.4 D.54、若一个三角形的两边长分别为7和9,则该三角形的周长可能是(
)A.16 B.18 C.24 D.335、如图,是等边三角形,点P在内,,将PAB绕点A逆时针旋转得到,则PQ的长等于(
)A.6 B. C.3 D.26、甲、乙两汽车从城出发前往城,在整个行程中,汽车离开城的距离与时间的对应关系如图所示,下列结论错误的是(
)A.,两城相距 B.行程中甲、乙两车的速度比为3:5C.乙车于7:20追上甲车 D.9:00时,甲、乙两车相距7、下列二次根式中,最简二次根式是()A. B. C. D.8、下列四个数中,是无理数的为(
)A.0 B. C.-2 D.0.5第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S7的值为_____.2、若函数y=(k﹣2)x|k|﹣1+1是关于x的一次函数,则k=_____.3、如图,点A、B在x轴上,点C在y轴的正半轴上,且AC=BC=,OC=1,P为线段AB上一点,则PC2+PA⋅PB的值为_____.4、请写出一个y随x的增大而减小的函数解析式_____.5、小明同学非常喜欢数学,他在课外书上看到了一个有趣的定理“中线长定理”:在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则的最小值为______.6、如图,已知直线与相交于点,则关于x,y的二元一次方程组的解是_________.7、小明想测量旗杆的高度,他先将升旗的绳子拉到旗杆底端,并在绳子对应旗杆底端的位置上打了一个结,然后将绳子拉到离旗杆底部4m处,绳头恰好接触到底面,他发现此时绳头距打结处约1m,小明计算出旗杆的高度为_____m.三、解答题(7小题,每小题10分,共计70分)1、计算题(1)计算:;(2)化简:.2、如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)发现:如图1,连接CE,则△BCE的形状是_______________,∠CDB=____________°;(2)探索:如图2,点P为线段AC上一个动点,当点P在CD之间运动时,连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ,即△BPQ是等边三角形;思路:在线段BD上截取点H,使DH=DP,得等边△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易证△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等边三角形.试判断线段DQ、DP、AD之间的关系,并说明理由;(3)类比:如图3,当点P在AD之间运动时连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ.①试判断△BPQ的形状,并说明理由;②若AD=2,设AP=x,DQ=y,请直接写出y与x之间的函数关系式.3、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.4、已知:如图,线段a和∠α.求作:矩形ABCD,使AB=a,∠CAB=∠α.5、如图,四边形ABCD是矩形纸片,,,在上取一点,将纸片沿AE翻折,使点D落在BC边上的点F处.(1)AF的长=______;(2)BF的长=______;(3)CF的长=______;(4)求DE的长.6、如图,已知△ABC是锐角三角形(AB>AC).(1)请用无刻度直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,在线段MN上找一点O,使点O到边AB、BC的距离相等;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=10,BC=12,求ON的长.7、如图,直线与轴交于点,与轴交于点,点的坐标是,为直线上的动点,连接,,.(1)求,两点的坐标.(2)求证:为直角三角形.(3)当与面积相等时,求点的坐标.-参考答案-一、单选题1、B【解析】【分析】根据题意画出图形,进而利用勾股定理得出答案.【详解】解:如图所示:由题意可得:,由勾股定理得,故选B【点睛】此题考查了勾股定理的应用,解题的关键是理解题意,正确画出图形.2、A【解析】【分析】根据合并同类项、同底数幂的除法、完全平方公式以及二次根式的除法运算即可求出答案.【详解】解:A、原式,故选项A符合题意.B、原式,故选项B不符合题意.C、原式=9aD、原式,故选项D不符合题意.故选:A.【点睛】本题考查了合并同类项、同底数幂的除法、完全平方公式以及二次根式的除法运算,本题属于基础题型.3、B【解析】【分析】根据折叠的性质可得,再由矩形的性质可得,从而得到,然后设,则,在中,由勾股定理,即可求解.【详解】解:根据题意得:,在矩形纸片中,,∴,∴,设,则,在中,,∴,解得:,即.故选:B【点睛】本题主要考查了矩形与折叠,勾股定理,熟练掌握矩形的性质,折叠图形的性质是解题的关键.4、C【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】解:∵三角形的两边长分别为7和9,∴第三条边,∴三角形的周长,即三角形的周长,故选:C.【点睛】本题考查了三角形三条边的关系及等式的性质,熟练掌握运用三角形三边关系是解题关键.5、A【解析】【分析】由旋转以及是等边三角形可证△AQP为等边三角形,进而可知PQ的长度.【详解】解:∵△ABC为等边三角形,∴∠BAC=60°,∴∠PAB+∠CAP=60°,∵∠PAB=∠QAC,∴∠QAC+∠PAC=60°,∵AP=AQ,∴△AQP为等边三角形,∴PQ=AP=6,故选:A.【点睛】本题考查旋转变换,以及等边三角形的性质,熟练掌握等边三角形的性质是解决本题的关键.6、C【解析】【分析】根据整个行程中,汽车离开A城的距离y与时刻t的对应关系,即可得到正确结论.【详解】解:A、由题可得,A,B两城相距300千米,故A结论正确,不符合题意;B、甲车的平均速度为:300÷(10-5)=60(千米/时),乙车的平均速度为:300÷(9-6)=100(千米/时),所以行程中甲、乙两车的速度比为3:5,故B结论正确,不符合题意;C、设乙出发x小时后追上了甲,则100x=60(x+1),解得x=1.5,即乙车于7:30追上甲车,故C结论错误,符合题意;D、9:00时甲车所走路程为:60×(9-5)=240(km),300-240=60(km),即9:00时,甲、乙两车相距60km,故D结论正确,不符合题意.故选:C.【点睛】此题主要考查了看函数图象,以及一次函数的应用,关键是正确从函数图象中得到正确的信息.7、C【解析】【分析】最简二次根式是满足下列两个条件的二次根式:1.被开方数的因数是整数,因式为整式;2.被开方因数因式不能再被开方.【详解】A.0.3=B.,故B不是最简二次根式;C是最简二次根式;D.,故D不是最简二次根式,故选:C.【点睛】本题考查最简二次根式,是基础考点,难度较易,掌握相关知识是解题关键.8、B【解析】【分析】根据无限不循环小数是无理数对各选项进行判断即可.【详解】解:A、C、D中均为有理数,不符合题意;B中为无理数,符合题意,故选:B.【点睛】本题考查了无理数.解题的关键在于理解无理数.二、填空题1、【解析】【分析】根据题意求出S2=()1,S3=()2,S4=()3,…,根据规律解答.【详解】解:由题意得:S1=12=1,S2=(1×)2=()1,S3=(×)2==()2,S4=(××)2==()3,…,则Sn=()n-1,∴S7=()6=.故答案为:.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“Sn=()n-1”.2、-2【解析】【分析】由一次函数定义得到,即可求出答案.【详解】解:∵函数y=(k﹣2)x|k|﹣1+1是关于x的一次函数,∴,∴k=-2,故答案为:-2.【点睛】此题考查了一次函数的定义:形如:y=kx+b()的函数是一次函数,熟记定义是解题的关键.3、5【解析】【分析】由勾股定理可求AO=BO=2,设点P(x,0),由勾股定理和两点之间距离公式可求解.【详解】解:∵AC=BC=,OC=1,∴AO=BO===2,设点P(x,0),则PA=x+2,PB=2﹣x,PC2=x2+1,∴PC2+PA•PB=x2+1+(x+2)(2﹣x)=5,故答案为:5.【点睛】本题考查了勾股定理,坐标与图形性质,利用点的坐标表示线段的长是解题的关键.4、答案不唯一,y=-x.【解析】【分析】根据函数的增减性,去选择函数.【详解】根据题意,得y=-x,故答案为:y=-x.【点睛】本题考查了函数的增减性,熟练掌握函数的增减性是解题的关键.5、10【解析】【分析】根据矩形的性质得,,即,,即可得.【详解】解:如图,设点M为DE的中点,点N为FC的中点,连接MN交半圆于点P,此时PN取最小值,∵DE=4,四边形DEFG为矩形,∴,,∴,∴,∴,故答案为:10.【点睛】本题考查了矩形的性质,三角形三条边的关系,中线长定理,解题的关键是掌握中线长定理.6、【解析】【分析】把代入直线即可求出m的值,从而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线经过点,∴m=1+1=2,∴P(1,2),∴关于x,y的二元一次方程组的解是,故答案为:.【点睛】本题主要考查了二元一次去方程组与一次函数的关系,解答本题的关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.7、7.5【解析】【分析】先根据勾股定理建构直角三角形,利用勾股定理列拓展的一元一次方程,解方程即可.【详解】解:如图设旗杆的高度为xm,则绳长为(x+1)m,根据勾股定理得:,解方程得x=7.5m,,∴小明计算出旗杆的高度为
7.5m.故答案为7.5.【点睛】本题考查勾股定理,掌握勾股定理构图和勾股定理的应用是解题关键.三、解答题1、(1)2(2)【解析】【分析】(1)先化简根式,求绝对值和零指数幂,然后进行加减运算即可;(2)先通分、因式分解,然后计算乘除即可.(1)解:(2)解:【点睛】本题考查了有理数的混合运算,分式化简.解题的关键在于正确的计算和因式分解.2、(1)等边三角形,60;(2)AD=DQ+DP,见解析;(3)①△BPQ是等边三角形,见解析;②y=-x+4【解析】【分析】(1)根据直角三角形的两锐角互余求得∠ABC=60°,再根据角平分线的定义求得∠ABD=∠CBD=∠A=30°,则AD=BD,根据等腰三角形的性质证得AE=BE,再由直角三角形斜边上的中线性质得出CE=BE,根据等边三角形的判定即可得出结论;(2)根据思路和全等三角形的性质得出BH=DQ,结合AD=BD,BD=DH+BH即可解答;(3)延长BD至F,使DF=PD,连接PF,可证得△PDF是等边三角形,则有PF=PD,∠F=∠PDF=∠DPF=60°,进而可得∠F=∠PDQ=60°,证明∠BPF=∠QPD,利用ASA证明△PBF≌△PQD,得出PB=PQ,BF=DQ,结合∠BPQ=60°和AD=BD即可得出①②的结论.(1)解:如图1,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=∠ABC=30°,∴∠ABD=∠A,∠CDB=90°-∠CBD=60°,∴AD=BD,又DE⊥AB,∴AE=BE=AB,又∠ACB=90°,∴CE=AB=BE,又∠ABC=60°,∴△BCE是等边三角形,故答案为:等边三角形,60;(2)解:AD=DQ+DP,理由为:在线段BD上截取点H,使DH=DP,如图2,∵∠CDB=60°,∴△DPH为等边三角形,∴DP=PH,∠DPH=∠DHP=60°,又∠BPQ=60°,∴∠DPQ+∠QPH=∠HPB+∠QPH=60°,∠BHP=120°,∴∠DPQ=∠HPB,∵∠A=30°,DE⊥AB,∴∠QDP=∠A+∠AED=30°+90°=120°,∴∠QDP=∠BHP,在△PDQ≌△PHB中,∴△PDQ≌△PHB(ASA),∴DQ=BH,PQ=PB,∵AD=BD,∠BPQ=60°,∴△BPQ为等边三角形,AD=BD=BH+DH=DQ+DP,即AD=DQ+DP;(3)解:①△BPQ为等边三角形,理由为:延长BD至F,使DF=DP,连接PF,设DQ和BP相交于O,如图3,∵∠PDF=∠CDB=60°,∴△PDF为等边三角形,∴PF=DP,∠F=∠PDF=∠DPF=60°,∵∠A=30°,DE⊥AB,
∴∠PDQ=90°-∠A=60°,∴∠F=∠PDQ=60°,∵∠DPF+∠DPB=∠BPQ+∠DPB,又∠BPQ=60°,∴∠BPF=∠QPD,在△PBF和△PQD中,,∴△PBF≌△PQD(ASA),∴PB=PQ,BF=DQ,又∠BPQ=60°,∴△BPQ为等边三角形;②∵DF=DP,BF=DQ,AD=BD,∴DQ=BF=BD+DF=AD+DP,∵AD=2,AP=x,DQ=y,∴y=2+2-x,即y=-x+4.【点睛】本题考查含30°角的直角三角形的性质、直角三角形斜边上的中线性质、角平分线的定义、等腰三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形的外角性质等知识,知识点较多,综合性强,熟练掌握相关知识的联系和运用,利用类比的方法解决问题是解答的关键.3、见解析【解析】【分析】根据正方形的性质得到,,,再证明,,然后利用“”可判断,从而得到结论.【详解】证明:四边形是正方形,,,,,,,,,,,,在和中,,,.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解题的关键是掌握正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.4、作图见解析【解析】【分析】先作∠MAN=∠α,再在AM上截取AB=a,接着过B点作AM的垂线交AN于C,然后分别以A、C为圆心,BC、BA为半径画弧,两弧相交于D,则四边形ABCD满足条件.【详解】解:如图,矩形ABCD为所求.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定.5、(1)10(2)6(3)4(4)5【解析】【分析】(1)根据折叠的性质即可得;(2)先根据矩形的性质可得,再根据折叠的性质可得,然后在中,利用勾股定理即可得;(3)根据即可得;(4)先根据折叠的性质可得,设,则,再在中,利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年安徽省淮北市八年级英语上册期中考试试卷及答案
- 轮椅训练方法
- 2025版视网膜脱落常见症状及护理注意事项
- 2025版冠心病症状分析及护理措施
- 幼儿看图说话训练
- 经过时间的计算教学设计
- 眼睛科眼疾病的日常预防指南
- 安全员怎样给员工培训
- 设备异常处理方法及流程
- 《资治通鉴》核心解析
- 铁道概论PPT全套完整教学课件
- 麻醉科工作制度汇编
- GB/T 10000-1988中国成年人人体尺寸
- GA/T 452.1-2021居民身份证打印技术规范第1部分:打印质量要求
- 纪委书记政治画像
- 雅思词汇一本全(打印珍藏版)
- 2023统编版高中历史必修中外历史纲要上重点知识点归纳总结(复习必背)
- 高速磁浮大跨度桥梁设计关键技术介绍
- 子宫颈癌课件最新版
- 【教学课件】沪科版数学9上:22.1 第3课时比例的性质和黄金分割参考教学课件
- 生态系统服务功能与生态保护
评论
0/150
提交评论