版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成都市人民北路中学七年级数学上册期末压轴题汇编一、七年级上册数学压轴题1.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动.设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=∠AOQ?若存在,求出t的值;若不存在,请说明理由.2.如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长).(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是________;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?3.“数形结合”是重要的数学思想.请你结合数轴与绝对值的知识回答下列问题:(1)一般地,数轴上表示数m和数n的两点之间的距离等于│m-n│.如果表示数a和-2的两点之间的距离是3,记作│a-(-2)│=3,那么a=.(2)利用绝对值的几何意义,探索│a+4│+│a-2│的最小值为______,若│a+4│+│a-2│=10,则a的值为________.(3)当a=______时,│a+5│+│a-1│+│a-4│的值最小.(4)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC=8,动点P从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t0)秒.点M是AP的中点,点N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度.4.已知在数轴上,一动点P从原点出发向左移动4个单位长度到达点A,再向右移动7个单位长度到达点B.(1)求点A、B表示的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为9,若存在,写出点P表示的数;若不存在,说明理由;(3)若小虫M从点A出发,以每秒0.5个单位长度沿数轴向右运动,另一只小虫N从点B出发,以每秒0.2个单位长度沿数轴向左运动.设两只小虫在数轴上的点C处相遇,点C表示的数是多少?5.如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程的两根,与互为相反数,(1)求a、b、c、d的值;(2)若A、B两点以6个单位长度秒的速度向右匀速运动,同时C、D两点以2个单位长度/秒向左匀速运动,并设运动时间为t秒,问t为多少时,?(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍?若存在,求时间t;若不存在,请说明理由.6.已知数轴上三点,,对应的数分别为,0,3,点为数轴上任意一点,其对应的数为.(1)如果点到点、点的距离相等,那么的值是______.(2)数轴上是否存在点,使点到点、点的距离之和是8?若存在,求出的值;若不存在,请说明理由.(3)如果点以每分钟1个单位长度的速度从点向右运动,同时另一点从点以每分钟2个单位长度的速度向左运动.设分钟时点和点到点的距离相等,则的值为______.(直接写出答案)7.如图,一个电子跳蚤从数轴上的表示数a的点出发,我们把“向右运动两个单位或向左运动一个单位”作为一次操作,如:当时,则一次操作后跳蚤可能的位置有两个,所表示的数分别是2和5.(1)若,则两次操作后跳蚤所在的位置表示的数可能是多少?(2)若,且跳蚤向右运动了20次,向左运动了n次.①它最后的位置所表示的数是多少?(用含n的代数式表示)②若它最后的位置所表示的数为10,求n的值.(3)若,跳蚤共进行了若干次操作,其中有50次是向左运动,且最后的位置所表示的数为260,求操作的次数.8.已知,如图,实数a、b、c在数轴上表示的点分别是点A、B、C,且a、b、c满足.(1)求a、b、c的值;(2)若点A沿数轴向左以每秒1个单位的速度运动,点B和点C沿数轴向右运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t(秒).①2秒后,点A、B、C表示的数分别是,,;②运动t秒后,求点B和点C之间的距离(用“BC”表示)和点A和点B之间的距离(用“AB”表示);(用含t的代数式表示)③在②的基础上,请问:3×BC-AB的值是否随着时间t的变化而变化?若不变化,求这个不变的值;若变化,求这个值的变化范围;(3)若点A沿数轴向右以每秒1个单位的速度运动,点B和点C沿数轴向左运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t(秒).是否存在某一时刻,满足点A和点B之间的距离是点B和点C之间的距离的?若存在,直接写出时间t的值;若不存在,说明理由.9.如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。(应用拓展)(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值.10.已知射线在的内部,射线平分,射线平分.(1)如图1,若,则__________度;(2)若,①如图2,若射线在的内部绕点旋转,求的度数;②若射线在的外部绕点旋转(旋转中、均是指小于180°的角),其余条件不变,请借助图3探究的大小,直接写出的度数.11.如图1,在内部作射线,,在左侧,且.(1)图1中,若平分平分,则______;(2)如图2,平分,探究与之间的数量关系,并证明;(3)设,过点O作射线,使为的平分线,再作的角平分线,若,画出相应的图形并求的度数(用含m的式子表示).12.如图1,平面内一定点A在直线EF的上方,点O为直线EF上一动点,作射线OA、OP、OA',当点O在直线EF上运动时,始终保持∠EOP=90°、∠AOP=∠A'OP,将射线OA绕点O顺时针旋转60°得到射线OB.(1)如图1,当点O运动到使点A在射线OP的左侧,若OA'平分∠POB,求∠BOF的度数;(2)当点O运动到使点A在射线OP的左侧,且∠AOE=3∠A'OB时,求的值;(3)当点O运动到某一时刻时,∠A'OB=130°,请直接写出∠BOP=_______度.13.如图,一副三角板中各有一个顶点在直线的点处重合,三角板的边落在直线上,三角板绕着顶点任意旋转.两块三角板都在直线的上方,作的平分线,且,.(1)当点在射线上时(如图1),的度数是_______.(2)现将三角板绕着顶点旋转一个角度(即),请就下列两种情形,分别求出的度数(用含的代数式表示)①当为锐角时(如图2);②当为钝角时(如图3);14.已知点C在线段AB上,AC=2BC,点D,E在直线AB上,点D在点E的左侧.(1)若AB=15,DE=6,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,求的值.15.已知,OD为∠AOB内部的一条射线.(1)如图(1),若,OD为∠AOB内部的一条射线,,OE平分∠AOB,求∠DOE的度数;(2)如图(2),若OC、OD是∠AOB内部的两条射线,OM、ON分别平分∠AOD,∠BOC,且,求的值;(3)如图(3),C1为射线OB的反向延长线上一点,将射线OB绕点O顺时针以6°/s的速度旋转,旋转后OB对应射线为OB1,旋转时间为t秒(0<t35),OE平分∠AOB1,OF为∠C1OB1的三等分线,,若,直接写出t的值为_________.16.如图1,P点从点A开始以的速度沿的方向移动,Q点从点C开始以的速度沿的方向移动,在直角三角形中,,若,,,如果P,Q同时出发,用t(秒)表示移动时间.(1)如图1,若点P在线段上运动,点Q在线段上运动,当t为何值时,;(2)如图2,点Q在上运动,当t为何值时,三角形的面积等于三角形面积的;(3)如图3,当P点到达C点时,P,Q两点都停止运动,当t为何值时,线段的长度等于线段的长.17.综合与探究:射线是内部的一条射线,若,则我们称射线是射线的伴随线.例如,如图1,,,则,称射线是射线的伴随线;同时,由于,称射线是射线的伴随线.完成下列任务:(1)如图2,,射线是射线的伴随线,则,若的度数是,射线是射线的伴随线,射线是的平分线,则的度数是.(用含的代数式表示)(2)如图3,如,射线与射线重合,并绕点以每秒的速度逆时针旋转,射线与射线重合,并绕点以每秒的速度顺时针旋转,当射线与射线重合时,运动停止.①是否存在某个时刻(秒),使得的度数是,若存在,求出的值,若不存在,请说明理由;②当为多少秒时,射线,,中恰好有一条射线是其余两条射线的伴随线.请直接写出结果.18.如图1,为直线上一点,过点作射线,,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方.(注:本题旋转角度最多.)(1)将图1中的三角板绕点以每秒的速度沿顺时针方向旋转.如图2,经过秒后,______度(用含的式子表示),若恰好平分,则______秒(直接写结果).(2)在(1)问的基础上,若三角板在转动的同时,射线也绕点以每秒的速度沿顺时针方向旋转,如图3,经过秒后,______度(用含的式子表示)若平分,求为多少秒?(3)若(2)问的条件不变,那么经过秒平分?(直接写结果)19.已知∠AOB,过顶点O作射线OP,若∠BOP=∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图1,射线OP1,OP2都是∠AOB的“好线”.(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数.(2)如图2,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”.(3)如图3,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,请求出符合条件的所有的旋转时间.20.如图,点、在数轴上分别表示实数、,、两点之间的距离表示为,在数轴上、两点之间的距离请你利用数轴回答下列问题:(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和的两点之间的距离为________.(2)数轴上表示和1两点之间的距离为_______,数轴上表示和两点之间的距离为________.(3)若表示一个实数,且,化简________.(4)的最小值为________.(5)的最大值为________.【参考答案】***试卷处理标记,请不要删除一、七年级上册数学压轴题1.(1)∠POQ=104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或或,使得∠POQ=∠AOQ.【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=解析:(1)∠POQ=104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或或,使得∠POQ=∠AOQ.【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ=∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ=∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t≤15时,2t+40+6t=120,t=10;当15<t≤20时,2t+6t=120+40,t=20;当20<t≤30时,2t=6t-120+40,t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=(120-6t),t=.当20<t≤30时,2t–(6t-120)=(6t-120),t=.答:存在t=12或或,使得∠POQ=∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.2.(1)-2π;(2)①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;;②34π;2π.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)①利用滚动的方向以及滚动的周数即解析:(1)-2π;(2)①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;;②34π;2π.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)①利用滚动的方向以及滚动的周数即可得出Q点移动距离变化;
②利用绝对值得性质以及有理数的加减运算得出移动距离和Q表示的数即可.【详解】解:(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是-2π;故答案为:-2π;
(2)①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;
②|﹢2|+|-1|+|-5|+|+4|+|+3|+|-2|=17,
Q点运动的路程共有:17×2π×1=34π;
(+2)+(-1)+(-5)+(+4)+(+3)+(-2)=1,
1×2π=2π,此时点Q所表示的数是2π.【点睛】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.3.(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两点间的距离公式,到-2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小解析:(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两点间的距离公式,到-2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小;分两种情况,或,化简绝对值即可求得;(3)根据表示点a到﹣5,1,4三点的距离的和,即可求解;(4)因为点A表示的数为4和AC=8,所以点C表示的数为-4,点P表示的数为(1-6t),则点M表示的数为,点N表示的数为,两数相减取绝对值即可求得.【详解】(1)∵∴a-(-2)=3或a-(-2)=-3解得a=1或-5故答案为:1或-5(2)当点a在点-4和点2之间时,的值最小∵数a的点位于-4与2之间∴a+4>0,a-2<0∴=a+4-a+2=6;当时a+4<0,a-2<0∴===10解得a=-6当时a+4>0,a-2>0∴===10解得a=4故答案为:6,4或-6(3)根据表示一点到-5,1,4三点的距离的和.所以当a=1时,式子的值最小此时的最小值是9故答案为:1(4)∵AC=8∴点C表示的数为-4又∵点P表示的数为(1-6t)∴则点M表示的数为,点N表示的数为∴.∴线段MN的长度不发生变化,其值为4.【点睛】此题考查绝对值的意义、数轴、结合数轴求两点之间的距离,掌握数形结合的思想是解决此题的关键.4.(1);(2)或;(3)【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:再分当时,当<<时,当时,三种情况讨论,从而可得答案;(3)设两只小虫的相遇时运动时解析:(1);(2)或;(3)【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:再分当时,当<<时,当时,三种情况讨论,从而可得答案;(3)设两只小虫的相遇时运动时间为,结合题意可得:解方程求解时间,再求点对应的数即可.【详解】解:(1)动点P从原点出发向左移动4个单位长度到达点A,则点对应的数为:再向右移动7个单位长度到达点B,则点对应的数为:(2)存在,理由如下:设对应的数为:则由题意得:当时,经检验:符合题意,当<<时,方程左边此时方程无解,当时,经检验:符合题意,综上:点P到点A和点B的距离之和为9时,或(3)设两只小虫的相遇时运动时间为,结合题意可得:点对应的数为:【点睛】本题考查的是数轴上动点问题,数轴上两点之间的距离,绝对值方程的解法,一元一次方程的应用,掌握数轴上点运动后对应的数的表示规律,两点间的距离,分类讨论是解题的关键.5.(1)a=-10,b=-8,c=16,d=20;(2)t为或4时,;(3)存在,时间t=或4时,B与C的距离是A与D的距离的4倍.【分析】(1)解含绝对值的方程即可求出a和b,根据平方和绝对值的解析:(1)a=-10,b=-8,c=16,d=20;(2)t为或4时,;(3)存在,时间t=或4时,B与C的距离是A与D的距离的4倍.【分析】(1)解含绝对值的方程即可求出a和b,根据平方和绝对值的非负性即可求出c和d;(2)用含t的式子表示出点A、B、C、D表示的数,然后根据点A和点C的位置关系分类讨论,分别列出方程即可求出结论;(3)先根据题意求出t的取值范围,然后根据点A和点D的位置关系分类讨论,分别列出对应的方程即可分别求出结论.【详解】解:(1)∴解得:x=-10或x=-8∵a,b是方程的两根,∴a=-10,b=-8∵与互为相反数∴∴解得:c=16,d=20;(2)由运动时间为t秒,则点A表示的数为6t-10,点B表示的数为6t-8,点C表示的数为16-2t,点D表示的数为20-2t若点A在点C左侧时,根据题意可得(16-2t)-(6t-10)=6解得:t=;若点A在点C右侧时,根据题意可得(6t-10)-(16-2t)=6解得:t=4;答:t为或4时,;(3)存在,当B与D重合时,即6t-8=20-2t解得:t=∵点B运动到点D的右侧∴t>,点B一定在点C右侧当点A与点D重合时,即6t-10=20-2t解得:t=①若点A在点D左侧或与D重合时,即<t≤时,AD=(20-2t)-(6t-10)=30-8t,BC=(6t-8)-(16-2t)=8t-24根据题意可得8t-24=4(30-8t)解得:t=;②若点A在点D右侧时,即t>时,AD=(6t-10)-(20-2t)=8t-30,BC=(6t-8)-(16-2t)=8t-24根据题意可得8t-24=4(8t-30)解得:t=4;综上:存在,时间t=或4时,B与C的距离是A与D的距离的4倍.【点睛】此题考查的是一元一次方程的应用、数轴与动点问题,掌握数轴上两点之间的距离公式是解题关键.6.(1)1(2)存在,或(3)或【分析】(1)根据两点间的距离列方程求解即可;(2)分两种情况求解即可;(3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况解析:(1)1(2)存在,或(3)或【分析】(1)根据两点间的距离列方程求解即可;(2)分两种情况求解即可;(3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况求解.【详解】解:(1)由题意得3-x=x-(-1),解得x=1;(2)存在,∵MN=3-(-1)=4,∴点P不可能在M、N之间.当点P在点M的左侧时,(-1-x)+(3-x)=8,解得x=-3;当点P在点N的右侧时,x-(-1)+(x-3)=8,解得x=5;∴或;(3)当点P和点Q相遇时,t+2t=3,解得t=1;当点Q运动到点M的左侧时,t+1=2t-4,解得t=5;∴或.【点睛】此题主要考查了数轴的应用以及一元一次方程的应用,分类讨论得出是解题关键.7.(1)-2或1或4;(2)①43-n;②33;(3)210次【分析】(1)先得出一次操作后所可能表示的数,再得出第二次操作后的数;(2)①根据题意列出代数式即可;②令①中代数式的值为10,求解析:(1)-2或1或4;(2)①43-n;②33;(3)210次【分析】(1)先得出一次操作后所可能表示的数,再得出第二次操作后的数;(2)①根据题意列出代数式即可;②令①中代数式的值为10,求出n值即可;(3)设跳蚤向右运动了m次,根据题意列出方程,解出m值,再加上50即可.【详解】解:(1)∵a=0,则一次操作后表示的数为-1或2,则两次操作后表示的数为-2或1或4;(2)①由题意可得:a=3时,向右运动了20次,向左运动了n次,∴最后表示的数为:3+20×2-n=43-n;②令43-n=10,则n=33;(3)设跳蚤向右运动了m次,根据题意可得:-10-50+2m=260,则m=160,∴操作次数为50+160=210.【点睛】本题考查了数轴,一元一次方程,解题的关键是要理解“一次操作”的意义.8.(1);(2)①,;②,;③不变,这个不变的值为;(3)存在,,.【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b、c的值,根据两点间的距离,可得答案;(2)①解析:(1);(2)①,;②,;③不变,这个不变的值为;(3)存在,,.【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b、c的值,根据两点间的距离,可得答案;(2)①2秒时A计算-8-2,B计算-2+2×2,C计算3+2×3即可,②t秒时,点A表示-8-t,点B表示-2+2t,点C表示3+3t,根据根据两点间的距离公式计算BC=3+3t-(-2+2t),AB=-2+2t-(-8-t),③计算3×BC-AB=3(5+t)-(8+3t)即可;(3)分类讨论.先把A、B、C用t表示,点A表示-8+t,点B表示-2-2t,,点C表示3-3t,BC=3-3t-(-2-2t)=3-3t+2+2t=5-t,AB=-2-2t-(-8+t)=-2-2t+8-t=6-3t,时5-t=2(6-3t),时5-t=2(3t-6),t≥5时,t-5=2(3t-6)即可.【详解】(1)依题意,=0,=0,=0.所以,,.(2)①2秒后,点A表示-8-2=-10,点B表示-2+2×2=-2+4=2,点C表示3+2×3=3+6=9,2秒后,点A、B、C表示的数分别是-10,2,9;②t秒时,点A表示-8-t,点B表示-2+2t,点C表示3+3t,BC=3+3t-(-2+2t)=3+3t+2-2t=5+t,AB=-2+2t-(-8-t)=-2+2t+8+t=6+3t,③3×BC-AB=3(5+t)-(6+3t)=15+3t-6-3t=9不变化,这个不变的值为9;(3)t秒时,点A表示-8+t,点B表示-2-2t,点C表示3-3t,BC=3-3t-(-2-2t)=3-3t+2+2t=5-t,AB=-2-2t-(-8+t)=-2-2t+8-t=6-3t,时5-t=2(6-3t),t=时5-t=2(3t-6),t=t≥5时,t-5=2(3t-6),t=舍去存在,时间t的值为或.【点睛】本题考查了实数与数轴,非负数的性质,列代数式,整式的加减,两点间的距离公式,分类构造方程是解题关键.9.(1)是;(2)10或0或20;(3);t=6;;t=12;;.【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为解析:(1)是;(2)10或0或20;(3);t=6;;t=12;;.【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可;(3)根据题意先用t的代数式表示出线段AP,AQ,PQ,再根据新定义列出方程,得出合适的解即可求出t的值.【详解】解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40-x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40-x),解得,x=20.综上,C点表示的数为10或0或20;(3)由题意得,(i)、若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60-4t=2×2t,解得,,②当PQ=2AP时,60-6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60-6t),解得,;综上,运动时间的所有可能值有;t=6;;(ii)、若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60-4t),解得,t=12;②当PQ=2AQ时,6t-60=2×(60-4t),解得,;③当AQ=2PQ时,60-4t=2(6t-60),解得,.综上,运动时间的所有可能值有:t=12;;.故,运动时间的所有可能值有:;t=6;;t=12;;.【点睛】本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解.10.(1)60;(2)①∠EOF=α;②当射线OE,OF只有1条在∠AOB外部时,∠EOF=α;当射线OE,OF都在∠AOB外部时,∠EOF=180°-α.【分析】(1)先求出∠BOC度数,根据角平解析:(1)60;(2)①∠EOF=α;②当射线OE,OF只有1条在∠AOB外部时,∠EOF=α;当射线OE,OF都在∠AOB外部时,∠EOF=180°-α.【分析】(1)先求出∠BOC度数,根据角平分线定义求出∠EOC和∠FOC的度数,求和即可得出答案;(2)①根据角平分线定义得出∠COE=∠AOC,∠COF=∠BOC,求出∠EOF=∠EOC+∠FOC=∠AOB,代入求出即可;②分两种情况:当射线OE,OF只有1条在∠AOB外部时,根据角平分线定义得出∠COE=∠AOC,∠COF=∠BOC,求出∠EOF=∠FOC-∠COE=∠AOB;当射线OE,OF都在∠AOB外部时,根据角平分线定义得出∠EOF=∠AOC,∠COF=∠BOC,求出∠EOF=∠EOC+∠COF=(360°-∠AOB),代入求出即可.【详解】解:(1)∵∠AOB=120°,∠AOC=32°,∴∠BOC=∠AOB-∠AOC=88°,
∵OE,OF分别是∠AOC和∠COB的角平分线,
∴∠EOC=∠AOC=16°,∠FOC=∠BOC=44°,∴∠EOF=∠EOC+∠FOC=16°+44°=60°.故答案为:60;(2)①∵OE,OF分别是∠AOC和∠COB的角平分线,
∴∠EOC=∠AOC,∠FOC=∠BOC,∴∠EOF=∠EOC+∠FOC=∠AOB=α;②分以下两种情况:当射线OE,OF只有1条在∠AOB外部时,如图3①,∠EOF=∠FOC-∠COE=∠BOC-∠AOC=(∠BOC-∠AOC)=∠AOB=α.当射线OE,OF都在∠AOB外部时,如图3②,
∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=(360°-∠AOB)=180°-α.综上所述,当射线OE,OF只有1条在∠AOB外面时,∠EOF=α;当射线OE,OF都在∠AOB外部时,∠EOF=180°-α.【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用.11.(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角解析:(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角平分线的性质结合已知条件进行角度之间的加减运算,分类讨论得出结论即可.【详解】解:(1)∵,,∴,∴,∵平分平分,∴,∴,∴,故答案为:120;(2).证明:∵平分,∴,∵,∴.∴.∵,∴.∵,∴,∴;(3)如图1,当在的左侧时,∵平分,∴,,∴,∵,,∴,∴,∴.∵为的平分线,∴.∴;如图2,当在的右侧时,∵平分,∴,∵,∴,∵,,∴,∴,∴.∵为的平分线,.综上所述,的度数为或.【点睛】本题主要考查了角平分线的性质与角度之间的加减运算,关键在于根据图形分析出各角之间的数量关系.12.(1)50°;(2)或6;(3)95或145.【分析】(1)根据OA′平分∠POB,设∠POA′=∠A′OB=x,根据题意列方程即可求解;(2)分射线OB在∠POA′内部和射线OB在∠POA解析:(1)50°;(2)或6;(3)95或145.【分析】(1)根据OA′平分∠POB,设∠POA′=∠A′OB=x,根据题意列方程即可求解;(2)分射线OB在∠POA′内部和射线OB在∠POA′外部两种情况分类讨论,分别设∠A′OB=x,∠AOE=3x,分别求出x的值,即可求值;(3)根据题意分类讨论,根据周角定义分别求出∠A'OA,再根据∠AOP=∠A'OP,结合已知即可求解.【详解】解:(1)∵OA′平分∠POB,∴设∠POA′=∠A′OB=x,∵∠AOP=∠A′OP=x,∵∠AOB=60°,∴x+2x=60°,∴x=20°,∴∠BOF=90°-2x=50°;(2)①当点O运动到使点A在射线OP的左侧,射线OB在∠POA′内部时,∵∠AOE=3∠A′OB,∴设∠A′OB=x,∠AOE=3x,∵OP⊥EF,∴∠AOF=180°-3x,∠AOP=90°-3x,∴,∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=,∴OP⊥EF,∴+3x=90°,∴x=,∴;②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,∵∠AOE=3∠A′OB,设∠A′OB=x,∠AOE=3x,∴∠AOP=∠A′OP=,∴OP⊥EF,∴3x+=90°,∴x=24°,∴;综上所述:的值是或6;(3)∠BOP=95°或145°;①如图3,当∠A'OB=130°时,由图可得:∠A'OA=∠A'OB-∠AOB=130°-60°=70°,又∵∠AOP=∠A'OP,∴∠AOP=35°,∴∠BOP=60°+35°=95°;②如图4,当∠A'OB=130°时,由图可得∠A'OA=360°-130°-60°=170°,又∵∠AOP=∠A'OP,∴∠AOP=85°,∴∠BOP=60°+85°=145°;综上所述:∠BOP的度数为95°或145°.【点睛】本题考查了角平分线的的定义和角的和差计算,根据题意正确画出图形进行分类讨论是解题关键.13.(1)37.5°;(2)①当0°<x°≤75°时,∠BOP=,当75°<x°<90°时,∠BOP=;②【分析】(1)根据题意可以求得∠BOD的度数,由于OP平分∠BOD,从而可以求得∠BOP的度解析:(1)37.5°;(2)①当0°<x°≤75°时,∠BOP=,当75°<x°<90°时,∠BOP=;②【分析】(1)根据题意可以求得∠BOD的度数,由于OP平分∠BOD,从而可以求得∠BOP的度数;(2)根据图形和第一问中的推导可以解答本题;(3)通过图形可以发现∠BOD是∠AOB与∠COD的和与∠MOC的差,从而可以解答本题.【详解】解:(1)∵∠AOB=45°,∠COD=60°,点C在射线ON上,∴∠BOD=180°−45°−60°=75°.∵OP平分∠BOD,∴∠BOP=37.5°.故答案为:37.5°;(2)①当∠CON为锐角时,∵∠AOB=45°,∠COD=60°,∠CON=x°,∠MON=180°,∴∠BOD=180°−45°−60°−x°=75°−x°.∵OP平分∠BOD,∴当0°<x°≤75°时,∠BOP=,当75°<x°<90°时,∠BOP=;②当∠CON为钝角时,∵∠AOB=45°,∠COD=60°,∠CON=x°,∠MON=180°,∴∠MOC=180°−x°.∴∠BOD=∠AOB+∠COD−∠MOC=45°+60°−(180°−x°)=x°−75°.∵OP平分∠BOD,∴∠BOP=.【点睛】本题考查角的计算,解题的关键是明确题意,可以根据图形找出所求问题需要的条件.14.(1)①AD的长为6.5;②AD的长为或;(2)的值为或【分析】(1)根据已知条件得到BC=5,AC=10,①由线段中点的定义得到CE=2.5,求得CD=3.5,由线段的和差得到AD=AC﹣C解析:(1)①AD的长为6.5;②AD的长为或;(2)的值为或【分析】(1)根据已知条件得到BC=5,AC=10,①由线段中点的定义得到CE=2.5,求得CD=3.5,由线段的和差得到AD=AC﹣CD;②如图2,当点F在点C的右侧时,如图3,当点F在点C的左侧时,由线段的和差即可得到结论;(2)当点E在线段BC之间时,①如图4,设BC=x,则AC=2BC=2x,求得AB=3x,设CE=y,得到AE=2x+y,BE=x﹣y,求得y=x,表示出CD、BD,即可求解;②当点E在点A的左侧,如图5,与①类似的步骤可求解;③当点D、E都在点C的右侧,如图6,与①类似的步骤可求解,于是得到结论.【详解】解:(1)∵AC=2BC,AB=15,∴BC=5,AC=10,①∵E为BC中点,∴CE=2.5,∵DE=6,∴CD=3.5,∴AD=AC﹣CD=10﹣3.5=6.5;②如图2,当点F在点C的右侧时,∵CF=3,AC=10,∴AF=AC+CF=13,∵AF=3AD,∴AD=;如图3,当点F在点C的左侧时,∵AC=10,CF=3,∴AF=AC﹣CF=7,∴AF=3AD,∴AD==;综上所述,AD的长为或;(2)①当点E在线段BC之间时,如图4,设BC=x,则AC=2BC=2x,∴AB=3x,∵AB=2DE,∴DE=1.5x,设CE=y,∴AE=2x+y,BE=x﹣y,∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,∵,∴,∴y=x,∴CD=1.5x﹣x=x,BD=3x﹣(0.5x+y)=x,∴==;②当点E在点A的左侧,如图5,设BC=x,则DE=1.5x,设CE=y,∴DC=EC+DE=y+1.5x,∴AD=DC﹣AC=y+1.5x﹣2x=y﹣0.5x,∵=,BE=EC+BC=x+y,∴,∴y=4x,∴CD=y+1.5x=4x+1.5x=5.5x,BD=DC+BC=y+1.5x+x=6.5x,∴,③点D、E都在点C的右侧时,如图6,设BC=x,则DE=1.5x,设CE=y,∴DC=EC-DE=y-1.5x,∴AD=DC+AC=y-1.5x+2x=y+0.5x,∵=,BE=EC-BC=y-x,∴,∴y=-4x(舍去)综上所述的值为或.【点睛】本题考查了两点间的距离,线段的和差,线段的中点,以及分类讨论的数学思想,比较难,分类讨论是解答本题的关键.15.(1)当OD在∠BOC内部时,;当OD在∠AOC内部时,;(2)的值为2;(3)3或15.【分析】(1)先根据当OD在∠BOC内部时,当OD在∠AOC内部时,求出的度数,再根据角平分线的定义求出解析:(1)当OD在∠BOC内部时,;当OD在∠AOC内部时,;(2)的值为2;(3)3或15.【分析】(1)先根据当OD在∠BOC内部时,当OD在∠AOC内部时,求出的度数,再根据角平分线的定义求出,然后根据角的和差即可得;(2)设,先根据角平分线的定义得出,再根据角的和差化简所求式子的分子分母即可得;(3)先依题意,找到两个临界位置:在AO的反向延长线上;与重合;然后根据角平分线的定义、角的和差倍分求解即可得.【详解】(1)如图1,当OD在∠BOC内部时,,,平分,,,;当OD在∠AOC内部时,,,平分,,,;(2)设,则,∴,,,,,故的值为2;(3),旋转速度为,射线OB旋转到OA即停止转动,由题意得,,平分,,因,则有两个临界位置:在AO的反向延长线上,此时;与重合,此时,因此,分以下三种情况分析:如图3-1,当时,则,,解得,符合题设,②如图3-2,当时,则,,解得,符合题设,③如图3-3,当时,则,,解得或,均不符题设,舍去,综上,t的值为3或15,故答案为:3或15.【点睛】本题考查了角平分线的定义、角的和差倍分,较难的是题(3),依据题意,找出两个临界位置,从而分三种情况讨论构造方程是解题关键.16.(1)4,(2)9,(3)或4【分析】(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可.(2)当Q在解析:(1)4,(2)9,(3)或4【分析】(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可.(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,根据三角形QAB的面积等于三角形ABC面积的,列出方程即可解决问题.(3)分三种情形讨论即可①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动.②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,分别列出方程求解即可.【详解】解:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,∵AQ=AP,∴12﹣t=2t,∴t=4.∴t=4时,AQ=AP.(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,∵三角形QAB的面积等于三角形ABC面积的,∴•AB•AQ=וAB•AC,∴×16×(12﹣t)=×16×12,解得t=9.∴t=9时,三角形QAB的面积等于三角形ABC面积的.(3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒,①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动,设CQ=t,AP=2t,则AQ=12﹣t,BP=16﹣2t,∵AQ=BP,∴12﹣t=16﹣2t,解得t=4.②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动,设CQ=t,则AQ=12﹣t,BP=2t﹣16,∵AQ=BP,∴12﹣t=2t﹣16,解得t=.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,∵AQ=t﹣12,BP=2t﹣16,∵AQ=BP,∴t﹣12=2t﹣16,解得t=4(舍去),综上所述,t=或4时,AQ=BP.【点睛】本题考查线段和差、一元一次方程等知识,解题的关键是理解题意,学会用方程的思想思考问题,属于中考常考题型.17.(1),;(2)①存在,当秒或12.5秒时,的度数是;②秒或秒或秒或15秒【分析】(1)根据伴随线和角平分线的性质求解即可;(2)分为若OC与OD在相遇之前、OC与OD在相遇之后两种情况求解解析:(1),;(2)①存在,当秒或12.5秒时,的度数是;②秒或秒或秒或15秒【分析】(1)根据伴随线和角平分线的性质求解即可;(2)分为若OC与OD在相遇之前、OC与OD在相遇之后两种情况求解即可;(3)分为(Ⅰ)OC、OD未相遇之前:当OC是OA的伴随线时,当OC是OD的伴随线时;(Ⅱ)OC、OD相遇之后:当OD是OC的伴随线时,当OD是OA的伴随线时,四种情况求解即可.【详解】解:(1)如图4所示,,,如图4所示:,,;故答案为:,;(2)射线与重合时,(秒)①当的度数是时,有两种可能:若OC与OD在相遇之前,如图5:则,∴,若OC与OD在相遇之后,如图6:则,∴;所以,当秒或12.5秒时,的度数是.②(Ⅰ)OC、OD未相遇之前:,,,当OC是OA的伴随线时,如图7:,即:,解得;当OC是OD的伴随线时,如图8:即:,解得;(Ⅱ)OC、OD相遇之后:,,当OD是OC的伴随线时,9如图:,即:,解得;当OD是OA的伴随线时,如图10:,即:,解得;综上:当,,,15秒时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国电镀钢球项目投资可行性研究报告
- 2026年研磨抛光机市场前景分析
- 梳妆架行业深度研究报告
- 片剂产销行业深度研究报告
- 设备控制行业深度研究报告
- 焗油亮彩润发乳行业深度研究报告
- 高压挤管机行业深度研究报告
- 高性能流量传感器行业深度研究报告
- 2025年北京高考数列真题及答案
- 排涝设施建设与维护管理方案
- 水文地质学基础试题库及参考答案
- 医院培训课件:《心肺复苏 (CPR)》
- 第42讲 电场能的性质-(原卷版)
- 2025海南省水利水务发展集团有限公司招聘75人考试参考试题及答案解析
- 2025年七年级上学期语文期中考试复习资料含答案
- 【2025年】江苏省宿迁市辅警协警笔试笔试真题(含答案)
- 2025年中国宠物窝数据监测研究报告
- 上海中心J酒店设计概念方案
- 防范电信网络诈骗宣传课件
- 朝花夕拾课件《父亲的病》
- 生产工艺基础知识培训课件
评论
0/150
提交评论