连云港市勾股定理选择题(含答案)_第1页
连云港市勾股定理选择题(含答案)_第2页
连云港市勾股定理选择题(含答案)_第3页
连云港市勾股定理选择题(含答案)_第4页
连云港市勾股定理选择题(含答案)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

连云港市中考数学模拟试卷分类汇编易错易错压轴选择题精选:勾股定理选择题(含答案)一、易错易错压轴选择题精选:勾股定理选择题1.已知一个直角三角形的两边长分别为3和5,则第三边长是()A.5 B.4 C. D.4或2.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为(

)A.20 B.24 C. D.3.如图,已知圆柱的底面直径,高,小虫在圆柱侧面爬行,从点爬到点,然后再沿另一面爬回点,则小虫爬行的最短路程的平方为()A.18 B.48 C.120 D.724.如果正整数a、b、c满足等式,那么正整数a、b、c叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知的值为()A.47 B.62 C.79 D.985.如图,已知,点在边上,,点是边上一个动点,若周长的最小值是6,则的长是()A. B. C. D.16.如图,在中,,的平分线与边相交于点,,垂足为,若的周长为6,则的面积为().A.36 B.18 C.12 D.97.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为()A. B. C. D.8.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接B,D和B,E.下列四个结论:①BD=CE,②BD⊥CE,③∠ACE+∠DBC=30°,④.其中,正确的个数是()A.1 B.2 C.3 D.49.如图,在四边形ABCD中,,与的平分线相交于BC边上的M点,则下列结论:①;②;③;④到AD的距离等于BC的;⑤为BC的中点;其中正确的有()A.2个 B.3个 C.4个 D.5个10.如图,是等边三角形,点D.E分别为边BC.AC上的点,且,点F是BE和AD的交点,,垂足为点G,已知,,则为()A.4 B.5 C.6 D.711.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A. B. C. D.12.已知一个直角三角形的两边长分别为1和2,则第三边长是()A.3 B. C. D.或13.有下列的判断:①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形③如果△ABC是直角三角形,那么a2+b2=c2以下说法正确的是()A.①② B.②③ C.①③ D.②14.如图,中,,,.设长是,下列关于的四种说法:①是无理数;②可以用数轴上的一个点来表示;③是13的算术平方根;④.其中所有正确说法的序号是()A.①② B.①③C.①②③ D.②③④15.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长()A.4 B.16 C. D.4或16.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,若CE=1,AB=4,则下列结论一定正确的个数是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE与△BDF的周长相等;A.1个 B.2个 C.3个 D.4个17.以线段、b、c的长为边长能构成直角三角形的是()A.=3,b=4,c=6 B.=1,b=,c=C.=5,b=6,c=8 D.=,b=2,c=18.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么值为()A.25 B.9 C.13 D.16919.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么的值为()A.13 B.19 C.25 D.16920.下列四组数据不能作为直角三角形的三边长的是()A.6,8,10 B.5,12,13 C.3,5,6 D.,,21.如图,在等腰Rt△ABC中,∠C=90°,AC=7,∠BAC的角平分线AD交BC于点D,则点D到AB的距离是(  )A.3 B.4 C. D.22.如图,在中,平分,平分的外角,且交于,若,则的值为()A.8 B.16 C.32 D.6423.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是(

)A.6 B. C.2π D.1224.如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是()A.杨辉 B.刘徽 C.祖冲之 D.赵爽25.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.、、26.如图,BD为的对角线,于点E,BF⊥DC于点F,DE、BF相交于点H,直线BF交线段AD的延长线于点G,下列结论:①;②;③AB=BH;④;⑤;其中正确的结论有()A.①②③ B.②③⑤ C.①⑤ D.③④27.在下列以线段a、b、c的长为边,能构成直角三角形的是()A.a=3,b=4,c=6 B.a=5,b=6,c=7 C.a=6,b=8,c=9 D.a=7,b=24,c=2528.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A.0 B.1 C. D.29.如图,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为()A.3 B. C. D.930.以下列各组数为边长,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,6 D.1,,2【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.D解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==故选:D2.B解析:B【分析】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b的值,得出x2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据题意得:2(ax+x2+bx)=(a+x)(b+x),化简得:ax+x2+bx-ab=0,又∵a=3,b=4,∴x2+7x=12;∴该矩形的面积为=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.3.D解析:D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点,的最短距离为线段的长.∵已知圆柱的底面直径,∴,在中,,,∴,∴从点爬到点,然后再沿另一面爬回点,则小虫爬行的最短路程的平方为.故选D.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.4.C解析:C【分析】依据每列数的规律,即可得到,进而得出的值.【详解】解:由题可得:……当故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.5.D解析:D【分析】作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,根据题意及作图可得出△OAD是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE是直角三角形,然后设AB=x,则OB=3+x,根据周长最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【详解】解:作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45°,由作图可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE是直角三角形,设AB=x,则OB=3+x,BE=6-x,在Rt△OBE中,,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.6.D解析:D【分析】利用角平分定理得到DE=AD,根据三角形内角和得到∠BDE=∠BDA,再利用角平分线定理得到BE=AB=AC,根据的周长为6求出AB=6,再根据勾股定理求出,即可求得的面积.【详解】∵,∴AB⊥AD,∵,平分,∴DE=AD,∠BED=,∴∠BDE=∠BDA,∴BE=AB=AC,∵的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,,∴的面积=,故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论.7.D解析:D【分析】先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】解:如图,由题意可得:AD2=0.72+2.42=6.25,在Rt△ABC中,∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,∴AB2+1.52=6.25,∴AB=±2,∵AB>0,∴AB=2米,∴小巷的宽度为:0.7+2=2.7(米).故选:D.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.8.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,在Rt△BDC中,,而BC2=2AB2,∴BD2<2AB2,∴故④错误,综上,正确的个数为2个.故选:B.【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.9.C解析:C【分析】过作于,得出,,求出,根据三角形内角和定理求出,即可判断①;根据角平分线性质求出,,即可判断④和⑤;由勾股定理求出,,即可判断③;根据证,推出,同理得出,即可判断②.【详解】解:过作于,与的平分线相交于边上的点,,,,,,,故①正确;平分,,,,同理,,故⑤正确;到的距离等于的一半,故④错误;由勾股定理得:,,又,,,同理,,故③正确;在和中,,同理,,故②正确;故选:.【点睛】本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.10.C解析:C【分析】结合等边三角形得性质易证△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE=15°,进而两次利用勾股定理可求解.【详解】∵△ABC为等边三角形∴∠BAE=∠C=60°,AB=AC,CD=AE∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,∵BG⊥AD,∴∠BGF=90°,∴∠FBG=30°,∵FG=1,∴BF=2FG=2,∵∠BEC=75°,∠BAE=60°,∴∠ABE=∠BEC﹣∠BAE=15°,∴∠ABG=45°,∵BG⊥AD,∴∠AGB=90°,∴AG=BG==,AB2=AG2+BG2=()2+()2=6.故选C.【点睛】本题考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG为等腰直角三角形是解题关键.11.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A、,能组成直角三角形,故正确;B、,不能组成直角三角形,故错误;C、,能组成直角三角形,故正确;D、,能组成直角三角形,故正确;故选:B.【点睛】本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.12.D解析:D【解析】当一直角边、斜边为1和2时,第三边==;当两直角边长为1和2时,第三边==;故选:D.13.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c不一定是斜边,故错误;②正确;③若△ABC是直角三角形,c不是斜边,则a2+b2≠c2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.14.C解析:C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB=90°,∴在RtABC中,m=AB==,故①②③正确,∵m2=13,9<13<16,∴3<m<4,故④错误,故选:C.【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型.15.D解析:D【解析】试题解析:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选D.16.D解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AB=4可得AC=BC=4,则AE=3=DE,由勾股定理可得CD=2,①正确;BD=4-2,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正确;△DCE的周长=CD+CE+DE=2+4,△BDF的周长=BD+BF+DF=BD+AB=4+4-2=4+2,④正确;故正确的选项有4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.17.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A、,C、,D、,故错误;B、,能构成直角三角形,本选项正确.故选B.【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.18.A解析:A【分析】根据勾股定理可以求得等于大正方形的面积,然后求四个直角三角形的面积,即可得到的值,然后根据即可求解.【详解】根据勾股定理可得,四个直角三角形的面积是:,即,则.故选:A.【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得和的值是关键.19.C解析:C【解析】试题分析:根据题意得:=13,4×ab=13﹣1=12,即2ab=12,则==13+12=25,故选C.考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.20.C解析:C【分析】求出两小边的平方和长边的平方,再看看是否相等即可.【详解】A、62+82=102,此时三角形是直角三角形,故本选项不符合题意;B、52+122=132,此时三角形是直角三角形,故本选项不符合题意;C、32+5262,此时三角形不是直角三角形,故本选项符合题意;D、,此时三角形是直角三角形,故本选项不符合题意;故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形,必须满足较小两边平方的和等于最大边的平方才能做出判断.21.C解析:C【分析】过点D作DE⊥AB于点E,根据角平分线的性质定理,可得:DE=DC=x,则BE=-x,进而可得到AE=AC=7,在Rt△BDE中,应用勾股定理即可求解.【详解】过点D作DE⊥AB于点E,则∠AED=90°,AE=AC=7,∵△ABC是等腰直角三角形,∴BC=AC=7,AB=,在Rt△AED和Rt△ACD中,AE=AC,DE=DC,∴Rt△AED≌Rt△ACD,∴AE=AC=7,设DE=DC=x,则BD=7-x,在Rt△BDE中,,即:,解得:,故选:C.【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.22.D解析:D【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE2+CF2=EF2.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,EF=8,由勾股定理可知CE2+CF2=EF2=64.故选:D.【点睛】此题考查角平分线的定义,直角三角形的判定,勾股定理的运用,解题关键在于掌握各性质定义.23.A解析:A【分析】分别求出以AB、AC、BC为直径的半圆及△ABC的面积,再根据S阴影=S1+S2+S△ABC-S3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=π(cm2);以BC为直径的半圆的面积S3=π(cm2);S△ABC=6(cm2);∴S阴影=S1+S2+S△ABC-S3=6(cm2);故选A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.24.D解析:D【分析】3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.【详解】由题意,可知这位伟大的数学家是赵爽.故选D.【点睛】考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.25.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A.32+42=52,能构成直角三角形,故不符合题意;B.12+12=()2,能构成直角三角形,故不符合题意;C.82+122≠132,不能构成直角三角形,故符合题意;D.()2+()2=()2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.26.B解析:B【分析】根据直角三角形的意义和性质可以得到解答.【详解】解:由题意,∴,②正确;∵∠DBC=45°,DE⊥BC,∴∠EDB=∠DBC=45°,∴BE=DE∴,∴BH=CD=AB,③正确;∵,∴AB⊥CD,∴即,⑤正确,∵没有依据支持①④成立,∴②③⑤正确故选B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论