苏科版(2024)数学八年级上册 第1章 三角形 单元测试(含解析)_第1页
苏科版(2024)数学八年级上册 第1章 三角形 单元测试(含解析)_第2页
苏科版(2024)数学八年级上册 第1章 三角形 单元测试(含解析)_第3页
苏科版(2024)数学八年级上册 第1章 三角形 单元测试(含解析)_第4页
苏科版(2024)数学八年级上册 第1章 三角形 单元测试(含解析)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1章三角形单元测试一、选择题1.下列图形中,和所给图全等的图形是()A. B. C. D.2.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′ B.AB=A′B′,∠A=∠A′,∠B=∠B′ C.AB=A′B′,∠A=∠A′,∠C=∠C′ D.∠A=∠A′,∠B=∠B′,∠C=∠C′3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.45° C.35° D.25°5.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL6.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A.4个 B.3个 C.2个 D.1个7.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.178.如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;④DE=CE+2BE.其中正确的有()A.①②③ B.③④ C.①④ D.①③④二、填空题9.已知,如图∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF(1)若以“SAS”为依据,还要添加的条件为;(2)若以“ASA”为依据,还要添加的条件为.10.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为米.11.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=.12.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是.13.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为cm.14.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=.15.在△ABC中,AD,CE为高,两条高所在的直线相交于H点,若CH=AB,求∠ACB的大小为或.16.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=时,才能使△ABC和△APQ全等.三、解答题17.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F.(1)根据给出的条件,请找出与△ABC全等的三角形,并说明理由;(2)EF平分∠DEC吗?为什么?18.如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:OE=OD;(3)猜测AE,CD,AC三者的数量关系,并证明.19.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.(1)EC与BF有何大小关系?说明理由.(2)EC与BF有何位置关系?说明理由.20.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图,当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;(2)当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.

第1章三角形参考答案与试题解析一、选择题1.下列图形中,和所给图全等的图形是()A. B. C. D.【答案】D【分析】根据能够完全重合的两个图形是全等形即可判断出答案.【解答】解;如图所示:和题干图全等的图形是选项D.故选:D.【点评】本题考查全等形的定义,属于基础题,注意掌握全等形的定义.2.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′ B.AB=A′B′,∠A=∠A′,∠B=∠B′ C.AB=A′B′,∠A=∠A′,∠C=∠C′ D.∠A=∠A′,∠B=∠B′,∠C=∠C′【答案】D【分析】根据三角形全等的判定方法,SSS、SAS、ASA、AAS,逐一检验.【解答】解:A、符合SAS判定定理,故本选项错误;B、符合ASA判定定理,故本选项错误;C、符合AAS判定定理,故本选项错误;D、没有AAA判定定理,故本选项正确.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【答案】D【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.45° C.35° D.25°【答案】B【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ABC中可求得∠BAC,则可求得∠EAC.【解答】解:∵∠B=70°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵△ABC≌△ADE,∴∠EAD=∠BAC=80°,∴∠EAC=∠EAD﹣∠DAC=80°﹣35°=45°,故选:B.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.5.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL【答案】B【分析】结合图形根据三角形全等的判定方法解答.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,∠ABC=∠EDC=90°BC=CD∴△EDC≌△ABC(ASA).故选:B.【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.6.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A.4个 B.3个 C.2个 D.1个【答案】B【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.7.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.17【答案】B【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=1【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,在△ACD和△AEB中,∠D=∠ABEAD=AB∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=1∴四边形ABCD的面积为12.5,故选:B.【点评】本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.8.如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;④DE=CE+2BE.其中正确的有()A.①②③ B.③④ C.①④ D.①③④【答案】D【分析】因为∠CAD=2∠BAE,且∠ABC=90°,故延长EB至G,使BE=BG,从而得到∠GAE=∠CAD,进一步证明∠GAC=∠EAD,且AE=AG,接着证明△GAC≌△EAD,则∠ADE=∠ACG,DE=CG,所以①是正确的,也可以通过线段的等量代换运算推导出④是正确的,根据等腰三角形的性质可以判断③是正确的,当∠CAE=∠BAE时,可以推导出AC⊥DE,否则AC不垂直于DE,故②是错误的.【解答】解:如图,延长EB至G,使BE=BG,设AC与DE交于点M,∵∠ABC=90°,∴AB⊥GE,∴AB垂直平分GE,∴AG=AE,∠GAB=∠BAE=12∠∵∠BAE=12∠∴∠GAE=∠CAD,∴∠GAE+∠EAC=∠CAD+∠EAC,∴∠GAC=∠EAD,在△GAC与△EAD中,AG=AE∠GAC=∠EAD∴△GAC≌△EAD(SAS),∴∠G=∠AED,∠ACB=∠ADE,故①是正确的;∵AG=AE,∴∠G=∠AEG=∠AED,故③正确;∴AE平分∠BED,当∠BAE=∠EAC时,∠AME=∠ABE=90°,则AC⊥DE,当∠BAE≠∠EAC时,∠AME≠∠ABE,则无法说明AC⊥DE,故②是不正确的;∵△GAC≌△EAD,∴CG=DE,∵CG=CE+GE=CE+2BE,∴DE=CE+2BE,故④是正确的,综上所述:其中正确的有①③④.故选:D.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是通过二倍角这一条件,构造两倍的∠BAE,是本题的突破口,也是常用方法,同时,要注意本题设参数导角,对学生分析数据的能力有一定要求.二、填空题9.已知,如图∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF(1)若以“SAS”为依据,还要添加的条件为BE=CF或BC=EF;(2)若以“ASA”为依据,还要添加的条件为∠A=∠D.【答案】见试题解答内容【分析】(1)根据全等三角形的SAS定理,只需找出夹角的另一边,即BC=EF,即可证得.(2)要判定△ABC≌△DEF,已知∠ABC=∠DEF,AB=DE,加∠A=∠D即可.【解答】解:(1)∵∠ABC=∠DEF,AB=DE,要使△ABC≌△DEF,且以“SAS”为依据,∴还要添加的条件为:BE=CF或BC=EF;故答案为:BE=CF或BC=EF;(2)∵∠ABC=∠DEF,AB=DE,要使△ABC≌△DEF,且以“ASA”为依据,∴还要添加的条件为:∠A=∠D.故答案为:∠A=∠D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.10.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为5米.【答案】见试题解答内容【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,在△OA′B′和△OAB中OA'=OB∠A'OB'=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5m,故答案为:5.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.11.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=40°.【答案】见试题解答内容【分析】求出BD=CE和∠B的度数,根据SAS推出△ADB≌△AEC,推出∠C=∠B=40°,根据三角形内角和定理求出即可.【解答】解:∵BE=CD,∴BE﹣DE=CD﹣DE,∴BD=CE,∵∠2=100°,∠BAE=60°,∴∠B=∠2﹣∠BAE=40°,∵在△ADB和△AEC中AD=AE∠1=∠2∴△ADB≌△AEC,∴∠C=∠B=40°,∵∠2+∠C+∠CAE=180°,∴∠CAE=180°﹣100°﹣40°=40°,故答案为:40°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质,三角形内角和定理的应用,解此题的关键是求出△ADB≌△AEC,注意:全等三角形的对应边相等,对应角相等.12.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是180°.【答案】见试题解答内容【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,进而得出答案.【解答】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故答案为:180°【点评】此题主要考查了全等三角形的性质以及三角形内角和定理,正确掌握全等三角形的性质是解题关键.13.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为6cm.【答案】见试题解答内容【分析】先利用角平分线的性质得到DC=DE,则△DEB的周长=BC+BE,再证明Rt△ACD≌Rt△AED得到AC=AE,所以△DEB的周长=AE+BE=AB.【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DC=DE,∴△DEB的周长=DE+BE+BD=CD+BD+BE=BC+BE,在Rt△ACD和Rt△AED中AD=ADCD=CE∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵AC=BC,∴AE=BC,∴△DEB的周长=AE+BE=AB=6cm.故答案为6.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质.14.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=6.【答案】见试题解答内容【分析】由AAS证明△ABC≌△EFC,得出对应边相等AC=EC,BC=CF=4,求出EC,即可得出AC的长.【解答】解:∵AC⊥BE,∴∠ACB=∠ECF=90°,在△ABC和△EFC中,∠ACB=∠ECF∴△ABC≌△EFC(AAS),∴AC=EC,BC=CF=4,∵EC=BE﹣BC=10﹣4=6,∴AC=EC=6;故答案为:6.【点评】本题考查了全等三角形的判定与性质;证明三角形全等得出对应边相等是解决问题的关键.15.在△ABC中,AD,CE为高,两条高所在的直线相交于H点,若CH=AB,求∠ACB的大小为45°或135°.【答案】见试题解答内容【分析】根据同角的余角相等求出∠DCH=∠DAB,再利用“角角边”证明△ABD和△CHD全等,根据全等三角形对应边相等可得AD=CD,求出△ACD是等腰直角三角形,再根据等腰直角三角形的性质求出∠ACD=45°,然后分△ABC是锐角三角形和钝角三角形两种情况求解即可.【解答】解:∵AD,CE为高,∴∠ADB=∠CEB=90°,∴∠BAD+∠B=90°,∠DCH+∠B=90°,∴∠DCH=∠DAB,在△ABD和△CHD中,∠DCH=∠DAB∠ADB=∠CDH=90°∴△ABD≌△CHD(AAS),∴AD=CD,∵AD是高,∴△ACD是等腰直角三角形,∴∠ACD=45°,如图1,△ABC是锐角三角形时,∠ACB=∠ACD=45°,如图2,△ABC是钝角三角形时,∠ACB=180°﹣∠ACD=180°﹣45°=135°,所以,∠ACB的大小为45°或135°.故答案为:45°或135°.【点评】本题考查了全等三角形的判定与性质,难点在于要分情况讨论,作出图形更形象直观.16.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=5cm或10cm时,才能使△ABC和△APQ全等.【答案】见试题解答内容【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题17.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F.(1)根据给出的条件,请找出与△ABC全等的三角形,并说明理由;(2)EF平分∠DEC吗?为什么?【答案】(1)与△ABC全等的三角形是△DCB,理由见解析;(2)EF平分∠DEC,理由见解析.【分析】(1)根据SSS即可证得△ABC和△DCB全等;(2)根据平行线的性质得出∠CEF=∠BCA,∠DEF=∠CBD,由全等三角形的性质得出∠BCA=∠CBD,从而得到∠CEF=∠DEF即可.【解答】解:(1)与△ABC全等的三角形是△DCB,理由:在△ABC和△DCB中,AB=DCAC=DB∴△ABC≌△DCB(SSS);(2)EF平分∠DEC,理由:∵EF∥BC,∴∠CEF=∠BCA,∠DEF=∠CBD,由(1)知△ABC≌△DCB,∴∠BCA=∠CBD,∴∠CEF=∠DEF,即EF平分∠DEC.【点评】本题考查了全等三角形的判定与性质,平行线的性质,角平分线的定义,熟练掌握这些知识点是解题的关键.18.如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:OE=OD;(3)猜测AE,CD,AC三者的数量关系,并证明.【答案】见试题解答内容【分析】(1)根据△ABC中,∠B=60°,所以∠BAC+∠BCA=120度.因为AD平分∠BAC,CE平分∠ACB,可求出∠AOC=120°;(2)根据全等得出OE=OF,OD=OF,即可得出答案;(3)求出∠AOE=60度.在AC上截取AF=AE,连接OF,易证△AOE≌△AOF,∠AOE=∠AOF=60°,可证△COD≌△COF,则CD=CF.因为AF=AE,所以AC=AF+CF=AE+CD,即AE+CD=AC.【解答】(1)解:在△ABC中,∠B=60°,∴∠BAC+∠BCA=180°﹣∠B=180°﹣60°=120°.∵AD平分∠BAC,CE平分∠ACB,∴∠OAC=∠OAB=12∠BAC,∠OCD=∠OCA=1在△OAC中,∠AOC=180°﹣(∠OAC+∠OCA)=180°−12(∠BAC+∠ACB)=180°(2)在AC上截取AF=AE,连接OF,如图,在△AOE和△AOF中,AE=AF∠OAE=∠OAF∴△AOE≌△AOF(SAS),∴∠AOE=∠AOF,∴∠AOF=60°,∴∠COF=∠AOC﹣∠AOF=120°﹣60°=60°,又∠COD=60°,∴∠COD=∠COF,在△COD和△COF中,∠COD=∠COFOC=OC∴△COD≌△COF(ASA),∴OE=OF,OF=OD,∴OE=OD.(3)AE+CD=AC,理由如下:由(2)可得△COD≌△COF,∴CD=CF.又∵AF=AE,∴AC=AF+CF=AE+CD,即AE+CD=AC【点评】本题考查了全等三角形的判定和性质;解答此题的关键是作出辅助线,构造全等三角形,把相关的线段划到同一个三角形中找关系.19.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.(1)EC与BF有何大小关系?说明理由.(2)EC与BF有何位置关系?说明理由.【答案】(1)EC=BF,理由见解析;(2)EC⊥BF,理由见解析.【分析】(1)先证∠EAC=∠BAF,即可根据SAS证得△EAC和△BAF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论