




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江杭州西湖区数学九上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A. B.C. D.2.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°3.使得关于的不等式组有解,且使分式方程有非负整数解的所有的整数的和是()A.-8 B.-10 C.-16 D.-184.已知反比例函数的解析式为,则的取值范围是A. B. C. D.5.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B. C. D.6.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.nmile B.60nmile C.120nmile D.nmile7.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m8.如图所示的工件,其俯视图是()A. B. C. D.9.顺次连接平行四边形四边的中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形10.如图,一张矩形纸片ABCD的长,宽将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:A.2:1 B.:1 C.3: D.3:211.二次函数y=-2(x+1)2+3的图象的顶点坐标是()A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3)12.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由左图中所示的图案平移后得到的图案是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为______米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)14.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C=__.15.如图,在△ABC中,∠A=90°,AB=AC=2,以AB为直径的圆交BC于点D,求图中阴影部分的面积为_____.16.已知∽,若周长比为4:9,则_____________.17.如图,正方形的顶点分别在轴和轴上,边的中点在轴上,若反比例函数的图象恰好经过的中点,则的长为__________.18.将抛物线先向上平移3个单位,再向右平移2个单位后得到的新抛物线对应的函数表达式为______.三、解答题(共78分)19.(8分)(1)问题发现:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是,位置关系是;(2)探究证明:如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段AD,BD,CD之间的等量关系,并证明;(3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,请直接写出AF的长.20.(8分)解方程21.(8分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率是多少?22.(10分)如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE于点H,证明:GH=CH.23.(10分)如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D.(1)求BC的长;(2)连接AD和BD,判断△ABD的形状,说明理由.(3)求CD的长.24.(10分)“辑里湖丝”是世界闻名最好的蚕丝,是浙江省的传统丝织品,属于南浔特产,南浔某公司用辑丝为原料生产的新产品丝巾,其生产成本为20元/条.此产品在网上的月销售量y(万件)与售价x(元/件)之间的函数关系为y=﹣0.2x+10(由于受产能限制,月销售量无法超过4万件).(1)若该产品某月售价为30元/件时,则该月的利润为多少万元?(2)若该产品第一个月的利润为25万元,那么该产品第一个月的售价是多少?(3)第二个月,该公司将第一个月的利润25万元(25万元只计入第二个月成本)投入研发,使产品的生产成本降为18元/件.为保持市场占有率,公司规定第二个月产品售价不超过第一个月的售价.请计算该公司第二个月通过销售产品所获的利润w为多少万元?25.(12分)解方程组:;化简:.26.用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣1.(2)x2+5x﹣4=2.
参考答案一、选择题(每题4分,共48分)1、A【分析】本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y=ax+b的图象相比较看是否一致.【详解】A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选A.2、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.3、D【分析】根据不等式组的解集的情况,得出关于m的不等式,求得m的取值范围,再解分式方程得出x,根据x是非负整数,得出m所有值的和.【详解】解:∵关于的不等式组有解,则,∴,又∵分式方程有非负整数解,∴为非负整数,∵,∴-10,-6,-2由,故答案选D.本题考查含参数的不等式组及含参数的分式方程,能够准确解出不等式组及方程是解题的关键.4、C【分析】根据反比例函数的定义可得|a|-2≠0,可解得.【详解】根据反比例函数的定义可得|a|-2≠0,可解得a≠±2.故选C.本题考核知识点:反比例函数定义.解题关键点:理解反比例函数定义.5、D【分析】关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=−,与y轴的交点坐标为(0,c).【详解】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=−>0,则对称轴应在y轴右侧,与图象不符,故A选项错误;
B.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,开口方向朝下,与图象不符,故B选项错误;
C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=−<0,则对称轴应在y轴左侧,与图象不符,故C选项错误;
D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=−>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.
故选D.此题考查一次函数和二次函数的图象性质,解题关键在于要掌握它们的性质才能灵活解题.6、D【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.【详解】过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=1.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=1×.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选D.此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.7、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.8、B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.9、D【解析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.10、B【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到,即,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF,
∴AF=AB=a,
∵矩形AFED与矩形ABCD相似,
∴,即,
∴a∶b=.
所以答案选B.本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.11、B【解析】分析:据二次函数的顶点式,可直接得出其顶点坐标;解:∵二次函数的解析式为:y=-(x-1)2+3,∴其图象的顶点坐标是:(1,3);故选A.12、B【解析】根据平移的性质:“平移不改变图形的形状和大小”来判断即可.【详解】解:根据“平移不改变图形的形状和大小”知:左图中所示的图案平移后得到的图案是B项,故选B.本题考查了平移的性质,平移的性质是“经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移不改变图形的形状、大小和方向”.二、填空题(每题4分,共24分)13、6.2【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为6.2.本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.14、【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.15、1【分析】连接AD,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.【详解】解:连接AD,
∵AB=BC=2,∠A=90°,∴∠C=∠B=45°,∴∠BAD=45°,∴BD=AD,∴BD=AD=,∴由BD,AD组成的两个弓形面积相等,∴阴影部分的面积就等于△ABD的面积,∴S△ABD=AD•BD=××=1.故答案为:1.本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.16、4:1【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,∴.故答案为:4:1.本题考查了相似三角形的性质,牢记相似三角形(多边形)的周长的比等于相似比是解题的关键.17、【分析】过点E作EG⊥x轴于G,设点E的坐标为(),根据正方形的性质和“一线三等角”证出△CEG≌△FCO,可得EG=CO=,CG=FO=OG-OC=,然后利用等角的余角相等,可得∠BAF=∠FCO,先求出tan∠BAF,即可求出tan∠FCO,即可求出x的值,从而求出OF和OC,根据勾股定理和正方形的性质即可求出CF、BF、AB、AF,从而求出OA.【详解】解:过点E作EG⊥x轴于G,如下图所示
∵反比例函数的图象过点,设点E的坐标为()∴OG=x,EG=∵四边形ABCD是正方形,∴AB=BC=CD,∠ABC=∠BCD=90°∵点E、F分别是CD、BC的中点∴EC=CD=BC=CF∵∠CEG+∠ECG=90°,∠FCO+∠ECG=90°,∴∠CEG=∠FCO在△CEG和△FCO中∴△CEG≌△FCO∴EG=CO=,CG=FO=OG-OC=∵∠BAF+∠AFB=90°,∠FCO+∠COF=90°,∠AFB=∠COF∴∠BAF=∠FCO在Rt△BAF中,tan∠BAF=∴tan∠FCO=tan∠BAF=在Rt△FCO中,tan∠FCO=解得:则OF==,OC=根据勾股定理可得:CF=∴BF=CF=,AB=BC=2CF=,根据勾股定理可得:AF=∴OA=OF+AF=故答案为:.此题考查的是反比例函数、正方形的性质、全等三角形的判定及性质、锐角三角函数和勾股定理,掌握利用反比例函数解析式设图象上点坐标、作辅助线构造全等三角形和等角的锐角三角函数相等是解决此题的关键.18、【分析】根据二次函数平移的特点即可求解.【详解】将抛物线先向上平移3个单位,再向右平移2个单位后得到的新抛物线对应的函数表达式为故答案为:.此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.三、解答题(共78分)19、(1)BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由详见解析;(3).【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)证明△BAD≌△CAE,得到BD=CE,根据勾股定理计算即可;(3)如图3,作辅助线,构建全等三角形,证明△BAF≌△CAG,得到CG=BF=13,证明是直角三角形,根据勾股定理计算即可.【详解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=90°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴,故答案为BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由是:如图2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴,∴2AD2=BD2+CD2;(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,则△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=13,Rt△CGF中,∵CF=5,∴FG=12,∵△FAG是等腰直角三角形,∴.本题主要考查了全等三角形的判定与性质,勾股定理,以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题关键.20、,.【解析】分析:用配方法解一元二次方程即可.还可以用公式法或者因式分解法.详解:方法一:移项,得,二次项系数化为1,得,,,由此可得,,.方法二:方程整理得:分解因式得:(x−1)(2x−1)=0,解得:,.点睛:考查解一元二次方程,常见的方法有:直接开方法,配方法,公式法和因式分解法,观察题目选择合适的方法.21、两个小球的号码相同的概率为.【解析】【试题分析】利用树状图求等可能事件的概率,树状图见解析.【试题解析】画树状图得:
∵共有6种等可能的结果,这两个小球的号码相同的有2情况,
∴这两个小球的号码相同的概率为:.22、(1)AE=;(2)证明见解析.【分析】(1)根据题意可得:AB=AC=6,可得AO=3,根据勾股定理可求BO的值,根据S△ABO=AB×BO=BO×AE,可求AE的长度.(2)延长AE到P,使AP=BF,可证△ABF≌△APC,可得AF=PC.则GA=PC,由AG⊥AF,AE⊥BE可得∠GAH=∠BFA=∠APC,可证△AGH≌△PHC,结论可得.【详解】解:(1)∵AB=AC,AB⊥AC,BC=6∴AB2+AC2=BC2,∴2AC2=72∴AC=AB=6∵四边形ABCD是平行四边形∴AO=CO=3在Rt△AOB中,BO==3∵S△ABO=AB×BO=BO×AE∴3×6=3×AE∴AE=(2)如图:延长AE到P,使AP=BF∵∠BAC=90°,AE⊥BE∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°∴∠ABE=∠CAE且AB=AC,BF=AP∴△ABF≌△APC∴AF=PC,∠AFB=∠APC∵AG⊥AF,AG=AF∴AG=PC∵∠GAH=∠GAF+∠FAE=90°+∠FAE,∠AFB=∠AEB+∠FAE=90°+∠FAE∴∠GAH=∠AFB∴∠AFB=∠GAH=∠APC,且AG=PC,∠GHA=∠CHP∴△AGH≌△CHP∴GH=HC本题考查了平行四边形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形是解决问题的关键.23、(1);(2)△ABD是等腰直角三角形,见解析;(3)【解析】(1)由题意根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC的长;(2)根据圆周角定理得到∠ADB=90°,再根据角平分线定义AD=BD,进而即可判断△ABD为等腰直角三角形;(3)由题意过点A作AE⊥CD,垂足为E,可知,分别求出CE和DE的长即可求出CD的长.【详解】解:(1)∵AB是直径∴∠ACB=∠ADB=90o在Rt△ABC中,.(2)连接AD和BD,∵CD平分∠ACB,∠ACD=∠BCD,∴即有AD=BD∵AB为⊙O的直径,∴∠ADB=90°,∴△ABD是等腰直角三角形.(3)过点A作AE⊥CD,垂足为E,在Rt△ACE中,∵CD平分∠ACB,且∠ACB=90o∴CE=AE=AC=在Rt△ABD中,AD2+BD2=AB2,得出在Rt△ADE中,∴.本题考查圆的综合问题,熟练掌握圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.以及其推论半圆(或直径)所对的圆周角是直角,9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江国企招聘2025金华浦江县国有企业公开招聘合同制工作人员(第一批)(四)笔试历年参考题库附带答案详解
- 2025昆明市第二人民医院融城老年病医院(5人)考前自测高频考点模拟试题及答案详解(名校卷)
- 2025重庆九洲智造科技有限公司招聘测试工艺技术员等岗位测试笔试历年参考题库附带答案详解
- 2025贵州遵义市应急救援大队有限责任公司招聘工作人员体能测试笔试历年参考题库附带答案详解
- 2025贵州贵阳中电环保发电有限公司招聘笔试历年参考题库附带答案详解
- 2025贵州江口谷润药业有限公司招聘合格人员笔试历年参考题库附带答案详解
- 2025贵州安顺市西秀区双堡镇小城镇开发有限责任公司招聘总经理1人笔试历年参考题库附带答案详解
- 2025西安西安安居笙活商业运营管理有限公司招聘(3人)笔试历年参考题库附带答案详解
- 2025福建莆田湄洲岛船舶专管员等岗位派遣人员23人笔试历年参考题库附带答案详解
- 2025福建福州建筑设计院有限责任公司招聘5人笔试历年参考题库附带答案详解
- 妇科专业疾病临床诊疗规范2025年版
- 2025年自学考试《00504艺术概论》考试复习题库(含答案)
- T/CHES 117-2023城市河湖底泥污染状况调查评价技术导则
- 平安医院建设试题及答案
- 专项项目贡献证明书与业绩认可函(8篇)
- 2025年广东省广州市中考二模英语试题(含答案)
- 消防员心理测试题库及答案解析
- 2025小升初租房合同模板
- 放射科造影剂过敏反应应急处理预案
- 《大嘴巴纸玩偶》名师课件
- 2025年上海市高考英语热点复习:阅读理解说明文
评论
0/150
提交评论