2026届四川省泸州市五中学数学九年级第一学期期末监测试题含解析_第1页
2026届四川省泸州市五中学数学九年级第一学期期末监测试题含解析_第2页
2026届四川省泸州市五中学数学九年级第一学期期末监测试题含解析_第3页
2026届四川省泸州市五中学数学九年级第一学期期末监测试题含解析_第4页
2026届四川省泸州市五中学数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届四川省泸州市五中学数学九年级第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1) B.(8,﹣4)C.(2,﹣1)或(﹣2,1) D.(8,﹣4)或(﹣8,4)2.如果,那么=()A. B. C. D.3.平面直角坐标系内一点P(2,-3)关于原点对称点的坐标是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)4.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A. B. C.2 D.5.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB6.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是()A.n B.n-1C.4n D.4(n-1)7.下列事件中为必然事件的是()A.抛一枚硬币,正面向上 B.打开电视,正在播放广告C.购买一张彩票,中奖 D.从三个黑球中摸出一个是黑球8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤a+c<,其中正确结论的个数是()A.②③④ B.①②⑤ C.①②④ D.②③⑤9.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.10.下列交通标志中,是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是_____.12.抛物线y=2(x﹣1)2﹣5的顶点坐标是_____.13.正五边形的每个内角为______度.14.如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A与BC边上的点E重合,折痕交AB于点F.若BE:EC=m:n,则AF:FB=15.将一元二次方程用配方法化成的形式为________________.16.若方程的解为,则的值为_____________.17.可乐和奶茶含有大量的咖啡因,世界卫生组织建议青少年每天摄入的咖啡因不能超过0.000085kg,将数据0.000085用科学记数法表示为____.18.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.三、解答题(共66分)19.(10分)如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.(1)在平面直角坐标系中,若点.①在的点中,是线段的“限距点”的是;②点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围20.(6分)阅读材料:以下是我们教科书中的一段内容,请仔细阅读,并解答有关问题.公元前3世纪,古希腊学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡,后来人们把它归纳为“杠杆原理”,通俗地说,杠杆原理为:阻力×阻力臂=动力×动力臂(问题解决)若工人师傅欲用撬棍动一块大石头,已知阻力和阻力臂不变,分别为1500N和0.4m.(1)动力F(N)与动力臂l(m)有怎样的函数关系?当动力臂为1.5m时,撬动石头需要多大的力?(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少?(数学思考)(3)请用数学知识解释:我们使用棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.21.(6分)如图所示,四边形ABCD中,AD∥BC,∠A=90°,∠BCD<90°,AB=7,AD=2,BC=3,试在边AB上确定点P的位置,使得以P、C、D为顶点的三角形是直角三角形.22.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大地方便了人们的出行.中国北斗导航已经全球组网,它已经走进了人们的日常生活.如图,某校周末组织学生利用导航到某地(用表示)开展社会实践活动,车辆到达地后,发现地恰好在地的正北方向,且距离地8千米.导航显示车辆应沿北偏东60°方向行驶至地,再沿北偏西45°方向行驶一段距离才能到达地.求两地间的距离(结果精确到0.1千米).(参考数据:)23.(8分)如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使△BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由.24.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)25.(10分)意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=;b=;c=;d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.26.(10分)(问题情境)如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(探究展示)(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.(拓展延伸)(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.

参考答案一、选择题(每小题3分,共30分)1、C【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E'F'O,∴点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.2、D【分析】直接利用已知进行变形进而得出结果.【详解】解:∵,∴3x+3y=5x,则3y=2x,那么=.故选:D.本题考查了比例的性质,正确将已知变形是解题的关键.3、C【解析】略4、D【分析】根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.【详解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故选D.本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.5、C【解析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【详解】延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选C.本题考查了平行线的判定,三角形外角的性质,比较简单.6、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和.【详解】解:如图示,由分别过点A1、A2、A3,垂直于两边的垂线,由图形的割补可知:一个阴影部分面积等于正方形面积的,即阴影部分的面积是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故选:B.此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.7、D【分析】根据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】A,B,C选项中,都是可能发生也可能不发生,是随机事件,不符合题意;D是必然事件,符合题意.故选:D.本题考查必然事件的定义,熟练掌握定义是关键.8、B【分析】令x=1,代入抛物线判断出①正确;根据抛物线与x轴的交点判断出②正确;根据抛物线的对称轴为直线x=﹣1列式求解即可判断③错误;令x=﹣2,代入抛物线即可判断出④错误,根据与y轴的交点判断出c=1,然后求出⑤正确.【详解】解:由图可知,x=1时,a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴△=>0,故②正确;∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x==﹣1,∴b=2a<0,故③错误;由图可知,x=﹣2时,4a﹣2b+c>0,故④错误;当x=0时,y=c=1,∵a+b+c<0,b=2a,∴3a+1<0,∴a<∴a+c<,故⑤正确;综上所述,结论正确的是①②⑤.故选:B.本题主要考查二次函数的图像与性质,关键是根据题意及图像得到二次函数系数之间的关系,熟记知识点是前提.9、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10、D【解析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、【分析】根据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ的最小值.【详解】解:如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=2,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=CD=1,∴DQ=,∴DQ的最小值是,故答案为.本题主要考查线段最小值问题,关键是利用旋转、等边三角形的性质及勾股定理求解.12、(1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y=2(x﹣1)2﹣5的顶点坐标是(1,﹣5).故答案为(1,﹣5).本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键13、1【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=1°.故答案为:1.本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.14、【分析】由折叠得,AF:FB=EF:FB.证明△BEF∽△CDE可得EF:FB=DE:EC,由BE:EC=m:n可求解.【详解】∵BE=1,EC=2,∴BC=1.∵BC=AD=DE,∴DE=1.sin∠EDC=;∵∠DEF=90°,∴∠BEF+∠CED=90°.又∠BEF+∠BFE=90°,∴∠BFE=∠CED.又∠B=∠C,∴△BEF∽△CDE.∴EF:FB=DE:EC.∵BE:EC=m:n,∴可设BE=mk,EC=nk,则DE=(m+n)k.∴EF:FB=DE:EC=∵AF=EF,∴AF:FB=15、【分析】把方程常数项移到右边,两边加上1,变形得到结果,即可得到答案.【详解】解:由方程,变形得:,配方得:,即;故答案为.此题考查了解一元二次方程——配方法,熟练掌握完全平方公式是解本题的关键.16、【分析】根据根与系数的关系可得出、,将其代入式中即可求出结果.【详解】解:∵方程的两根是,

∴、,

∴.

故答案为:.本题主要考查了一元二次方程根与系数的关系,牢记如果一元二次方程有两根,那么两根之和等于、两根之积等于是解题的关键.17、8.1×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000081=8.1×10-1.故答案为:8.1×10-1.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、.【详解】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.本题考查概率公式,掌握图形特点是解题关键,难度不大.三、解答题(共66分)19、(1)①E;②;(2).【分析】(1)①分别计算出C、D、E到A、B的距离,根据“限距点”的含义即可判定;②画出图形,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,据此可解;(2)画出图形,可知当时,直线上存在线段AB的“限距点”,据此可解.【详解】(1)①计算可知AC=BC=,DA=,DB=,EA=EB=2,设点为线段上任意一点,则,,,∴,∴点E为线段AB的“限距点”.故答案是:E.②如图,作PF⊥x轴于F,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,∵直线与x轴交于点A(-1,0),交y轴于点H(0,),∴∠OAH=30°,∴当AP=2时,AF=,∴此时点P的横坐标为-1,∴点P横坐标的取值范围是;(2)如图,直线与x轴交于M,AB交x轴于G,∵点A(t,1)、B(t,-1),直线与x轴的交点M(-1,0),与y轴的交点C(0,),∴,∴∠NMO=30°,①当圆B与直线相切于点N,连接BN,连接BA并延长与直线交于D(t,)点,∵∠NBD=∠NMO=30°,∴,即,解得:;②当圆A与直线相切时,同理可知:∴.本题考查了一次函数、圆的性质、两点间的距离公式,是综合性较强的题目,通过做此题培养了学生的阅读能力、数形结合的能力,此题是一道非常好、比较典型的题目.20、(1)400N;(2)1.5米;(3)见解析【分析】(1)根据杠杆定律求得函数的解析式后代入l=1.5求得力的大小即可;(2)将求得的函数解析式变形后求得动力臂的大小,然后即可求得增加的长度;(3)利用反比例函数的知识结合杠杆定律进行说明即可.【详解】试题解析:(1)、根据“杠杆定律”有FL=1500×0.4,∴函数的解析式为F=,当L=1.5时,F==400,因此,撬动石头需要400N的力;(2)、由(1)知FL=600,∴函数解析式可以表示为:L=,当F=400×=200时,L=3,3﹣1.5=1.5(m),因此若用力不超过400N的一半,则动力臂至少要加长1.5米;(3)因为撬棍工作原理遵循“杠杆定律”,当阻力与阻力臂一定时,其乘积为常数,设其为k,则动力F与动力臂L的函数关系式为F=,根据反比例函数的性质可知,动力F随动力臂l的增大而减小,所以动力臂越长越省力.考点:反比例函数的应用21、在线段AB上且距离点A为1、6、处.【分析】分∠DPC=90°,∠PDC=90,∠PDC=90°三种情况讨论,在边AB上确定点P的位置,根据相似三角形的性质求得AP的长,使得以P、A、D为顶点的三角形是直角三角形.【详解】(1)如图,当∠DPC=90°时,∴∠DPA+∠BPC=90°,∵∠A=90°,∴∠DPA+∠PDA=90°,∴∠BPC=∠PDA,∵AD∥BC,∴∠B=180°-∠A=90°,∴∠A=∠B,∴△APD∽△BCP,∴,∵AB=7,BP=AB-AP,AD=2,BC=3,∴,∴AP2﹣7AP+6=0,∴AP=1或AP=6,(2)如图:当∠PDC=90°时,过D点作DE⊥BC于点E,∵AD//BC,∠A=∠B=∠BED=90°,∴四边形ABED是矩形,∴DE=AB=7,AD=BE=2,∵BC=3,∴EC=BC-BE=1,在Rt△DEC中,DC2=EC2+DE2=50,设AP=x,则PB=7﹣x,在Rt△PAD中PD2=AD2+AP2=4+x2,在Rt△PBC中PC2=BC2+PB2=32+(7﹣x)2,在Rt△PDC中PC2=PD2+DC2,即32+(7﹣x)2=50+4+x2,解方程得:.(3)当∠PDC=90°时,∵∠BCD<90°,∴点P在AB的延长线上,不合题意;∴点P的位置有三处,能使以P、A、D为顶点的三角形是直角三角形,分别在线段AB上且距离点A为1、6、处.本题考查了相似三角形的判定与性质及勾股定理,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;解题时要认真审题,选择适宜的判定方法,熟练掌握相似三角形的判定定理并运用分类讨论的思想是解题关键.22、7.2千米【解析】设千米,过点作,可得,根据,列方程求解即可.【详解】解:设千米,过点作,交于点在中,在中,,∵∴∴答:两地间的距离约为7.2千米.本题主要考查解直角三角形应用和特殊三角函数..熟练掌握特殊三角函数值是解决问题的关键.23、(1)y=﹣x2+5x+6;(2)M(,);(3)存在5个满足条件的P点,尺规作图见解析【分析】(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6即可;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,则CM+BM=C'M+BM=BC最小;求出BC'的直线解析式为y=x+1,即可求M点;(3)根据等腰三角形腰的情况分类讨论,然后分别尺规作图即可.【详解】解:(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6,可得a=﹣1,b=5,∴y=﹣x2+5x+6;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,根据两点之间线段最短,则CM+BM=C'M+BM=C'B最小,∵C(0,6),∴C'(5,6),设直线BC'的解析式为y=kx+b将B(﹣1,0)和C'(5,6)代入解析式,得解得:∴直线BC'的解析式为y=x+1,将x=代入,解得y=∴M(,);(3)存在5个满足条件的P点;尺规作图如下:①若CB=CP时,以C为原点,BC的长为半径作圆,交抛物线与点P,如图1所示,此时点P有两种情况;②若BC=BP时,以B为原点,BC的长为半径作圆,交抛物线与点P,如图2所示,此时点P即为所求;③若BP=CP,则点P在BC的中垂线上,作BC的中垂线,交抛物线与点P,如图3所示,此时点P有两种情况;故存在5个满足条件的P点.此题考查的是求二次函数的解析式、求两线段之和的最小值和尺规作图,掌握用待定系数法求二次函数的解析式、两点之间线段最短和用尺规作图作等腰三角形是解决此题的关键.24、(1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:开通隧道前,汽车从A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽车从A地到B地比原来少走的路程为[40+40]千米.本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.25、(1)11,10,78.5,81;(2)600人;(3)八年级学生总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).【分析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【详解】解:(1)由题意知a=11

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论