广东省惠州博罗县联考2026届数学八上期末学业质量监测模拟试题含解析_第1页
广东省惠州博罗县联考2026届数学八上期末学业质量监测模拟试题含解析_第2页
广东省惠州博罗县联考2026届数学八上期末学业质量监测模拟试题含解析_第3页
广东省惠州博罗县联考2026届数学八上期末学业质量监测模拟试题含解析_第4页
广东省惠州博罗县联考2026届数学八上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省惠州博罗县联考2026届数学八上期末学业质量监测模拟试题试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.某厂计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,列出的正确方程为()A. B. C. D.2.下列计算中,正确的是()A. B.C. D.3.若分式的值为,则的值是()A. B. C. D.任意实数4.已知:如图,在中,,的垂直平分线,分别交,于点,.若,,则的周长为()A.8 B.10 C.11 D.135.下列实数中最大的是()A. B. C. D.6.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.7.如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为()A. B. C. D.8.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.8,15,17 B.4,6,8 C.3,4,5 D.6,8,109.如图,边长为4的等边在平面直角坐标系中的位置如图所示,点在轴上,点,在轴上,则点的坐标为()A. B. C. D.10.下列各数-,,0.3,,,其中有理数有()A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共24分)11.如图,在正方形网格中,∠1+∠2+∠3=_____________12.如图所示,在中,是的平分线,是上一点,且,连接并延长交于,又过作的垂线交于,交为,则下列说法:①是的中点;②;③;④为等腰三角形;⑤连接,若,,则四边形的面积为24;其中正确的是______(填序号).13.如图,点E在的边DB上,点A在内部,,AD=AE,AB=AC.给出下列结论:①BD=CE;②;③;④.其中正确的是__________.14.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为__________.15.函数中,自变量x的取值范围是.16.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是(_________)17.实数81的平方根是_____.18.如图,,,,,则点的坐标为____.三、解答题(共66分)19.(10分)如图,AE=AD,∠ABE=∠ACD,BE与CD相交于O.(1)如图1,求证:AB=AC;(2)如图2,连接BC、AO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).20.(6分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项的系数而分解成,另一位同学因看错了常数而分解成.(1)求原多项式;(2)将原多项式进行分解因式.21.(6分)(1)计算:(2)先化简,后求值:;其中22.(8分)如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于轴对称的图形;(2)已知和关于轴成轴对称,写出顶点,,的坐标.23.(8分)如图,已知AC平分∠BAD,∠B=∠D.求证:△ABC≌△ADC.24.(8分)两块等腰直角三角尺与(不全等)如图(1)放置,则有结论:①②;若把三角尺绕着点逆时针旋转一定的角度后,如图(2)所示,判断结论:①②是否都还成立?若成立请给出证明,若不成立请说明理由.25.(10分)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AF;(2)过点E作EG∥DC,交AC于点G,试比较AF与GC的大小关系,并说明理由.26.(10分)某商场计划销售甲、乙两种产品共件,每销售件甲产品可获得利润万元,每销售件乙产品可获得利润万元,设该商场销售了甲产品(件),销售甲、乙两种产品获得的总利润为(万元).(1)求与之间的函数表达式;(2)若每件甲产品成本为万元,每件乙产品成本为万元,受商场资金影响,该商场能提供的进货资金至多为万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,可列出方程.【详解】解:设计划x天生产120个零件,.故选D.【点睛】本题考查由实际问题抽象出分式方程,关键设出天数,以件数作为等量关系列方程.2、C【详解】选项A,;选项B,;选项C,;选项D,,必须满足a-2≠0.故选C.3、A【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可求出的值.【详解】解:∵分式的值为∴解得:故选A.【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0,是解决此题的关键.4、C【分析】先根据线段垂直平分线的定义和性质可得,,然后求出周长等于,再根据已知条件,代入数据计算即可得解.【详解】∵是的垂直平分线∴,∴的周长∵,∴的周长.故选:C【点睛】本题涉及到的知识点主要是线段垂直平分线的定义和性质,能够灵活运用知识点将求三角形周长的问题进行转化是解题的关键.5、D【解析】先对四个选项进行比较,再找出最大值.【详解】解:,所给的几个数中,最大的数是.故选:.【点睛】本题考查的是实数的大小,熟练掌握实数是解题的关键.6、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.7、B【分析】由数轴上点表示的数为,点表示的数为1,得PA=2,根据勾股定理得,进而即可得到答案.【详解】∵数轴上点表示的数为,点表示的数为1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴数轴上点所表示的数为:.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.8、B【解析】试题解析:A.

故是直角三角形,故错误;B.

故不是直角三角形,正确;C.

故是直角三角形,故错误;D.

故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.9、B【解析】由题意根据等边三角形的性质结合点在平面直角坐标系中的位置进行分析即可得解.【详解】解:∵等边的边长为4,∴BC=4,∵点在轴上,点,在轴上,∴O为BC的中点,BO=2,∴点的坐标为.故选:B.【点睛】本题考查平面直角坐标系中点的位置的确认,结合等边三角形的性质进行分析是解题的关键.10、B【分析】依据有理数的定义和实数分类进行判断即可.【详解】解:∵=-3,∴-,0.3,是有理数.而,是无理数,∴有理数有3个.故选:B.【点睛】此题主要考查了有理数的相关概念和实数的分类,正确把握相关定义是解题的关键.二、填空题(每小题3分,共24分)11、135°【分析】先证明△ABC≌△AEF,然后证明∠1+∠3=90°,再根据等腰直角三角形的性质可得∠2=45°,进而可得答案.【详解】解:如下图∵在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠BAC=∠4,∵∠BAC=∠1,

∴∠4=∠1,

∵∠3+∠4=90°,

∴∠1+∠3=90°,

∵AG=DG,∠AGD=90°,

∴∠2=45°,

∴∠1+∠2+∠3=135°,

故答案为:135°【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.12、③④⑤【分析】根据等腰三角形的定义、三角形的中线、三角形的高的概念进行判断,对角线垂直的四边形的面积=对角线乘积的一半;分别对选项进行判断,即可得到答案.【详解】解:∵AD是的平分线,假设①是的中点成立,则AB=AC,即△ABC是等腰三角形;显然△ABC不一定是等腰三角形,故①错误;根据题目的条件,不能证明,故②错误;∵∠ADC=∠1+∠ABD,∠1=∠2,∴∠ADC>∠2,故③正确;∵∠1=∠2,AH=AH,∠AHF=∠AHC=90°,∴△AHF≌△AHC(ASA),∴AF=AC,故④正确;∵AD⊥CF,∴S四边形ACDF=×AD×CF=×6×8=1.故⑤正确;∴正确的有:③④⑤;故答案为:③④⑤.【点睛】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,对角线垂直的四边形的面积,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.13、①②③④【分析】只要证明,利用全等三角形的性质即可一一判断.【详解】,故①正确;,故②正确;,即,故③正确;,故④正确.故答案为:①②③④.【点睛】本题考查了全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.14、16【解析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.15、.【解析】∵在实数范围内有意义,∴∴故答案为16、135°【分析】本题考查的是平行四边形的性质和等腰三角形的性质解决问题即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ADC+∠BCD=180°,∵△CDE是等腰直角三角形,∴∠EDC=∠ECD=45°,则∠ADE+∠BCE=∠ADC+∠BCD-∠EDC-∠ECD=90°,∵AD=DE,∴∠DEA=∠DAE=(180°-∠ADE),∵CE=AD=BC,∴∠CEB=∠CBE=(180°-∠BCE),∴∠DEA+∠CEB=(360°-∠ADE-∠BCE)=×270°=135°∴∠AEB=360°-∠DEC-∠DEA-∠CEB=360°-90°-135°=135°故答案为:135°.17、±1【分析】根据平方根的定义即可得出结论.【详解】解:实数81的平方根是:±=±1.故答案为:±1【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.18、【分析】如图,作BM⊥x轴于M,由△AOC≌△CMB,推出CM=OA,BM=OC,由此即可解决问题.【详解】如图,作BM⊥x轴于M,

∵,,∴,,

∵∠ACB=90°,

∴∠ACO+∠BCM=90°,∠OAC+∠ACO=90°,

∴∠OAC=∠BCM,

在△AOC和△CMB中,,

∴△AOC≌△CMB,

∴,,

∴,

∴点B坐标为,

故答案为:.【点睛】本题考查坐标与图形的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.三、解答题(共66分)19、(1)见解析;(2)△BDC≌△CEB,△DOB≌△EOC,△AOB≌△AOC,△ADO≌△AEO【分析】(1)根据“AAS”证明△ABE≌△ACD,从而得到AB=AC;(2)根据全等三角形的判定方法可得到4对全等三角形.【详解】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:∵AD=AE,∴BD=CE,而△ABE≌△ACD,∴CD=BE,∵BD=CE,CD=BE,BC=CB,∴△BDC≌△CEB(SSS);∴∠BCD=∠EBC,∴OB=OC,∴OD=OE,而∠BOD=∠COE,∴△DOB≌△EOC(SAS);∵AB=AC,∠ABO=∠ACO,BO=CO,∴△AOB≌△AOC(SAS);∵AD=AE,OD=OE,AO=AO,∴△ADO≌△AEO(SSS).【点睛】本题考查了全等三角形的判定性质,熟练掌握全等三角形的种判定方法是解题的关键.20、(1)3x1+11x+11;(1)3(x+1)1【分析】(1)利用多项式乘法计算出3(x-1)(x-4),3(x-1)(x+6),进而可得原多项式为3x1+11x+11;(1)提公因式3,再利用完全平方公式进行二次分解即可.【详解】解:(1)∵3(x-1)(x-4)

=3(x1-5x+4)=3x1-15x+11,

3(x-1)(x+6)

=3(x1+4x-11)=3x1+11x-36,

∴原多项式为3x1+11x+11;(1)3x1+11x+11=3(x1+4x+4)

=3(x+1)1.

故因式分解为:3(x+1)1.【点睛】此题主要考查了因式分解和多项式乘以多项式,关键是掌握计算法则,正确确定原多项式.21、(1);(2),【分析】(1)分式除法,先进行因式分解,然后再将除法转化成乘法进行计算;(2)分式的混合运算,先做小括号里的异分母分式减法,要进行通分,能进行因式分解的先进行因式分解,然后做除法,最后代入求值.【详解】(1);(2)原式,当时,原式.【点睛】本题考查分式的混合运算,掌握因式分解的技巧,运算顺序,正确计算是解题关键.22、(1)图形见详解;(2),,.【分析】(1)根据对称点到对称轴的距离相等,关于轴对称的图形,分别找出对应的顶点、、,连接各顶点;(2)平面直角坐标系中对称轴的性质求出的坐标,的坐标,的坐标,再由、、的坐标求出,,的坐标.【详解】(1)由关于轴对称的图形,对称点到x轴的距离相等,分别找出对应的顶点、、,然后连接各顶点;(2)如图中与关于轴对称,根据关于x轴对称的点纵坐标互为相反数,横坐标相等,可得的坐标,的坐标,的坐标;和关于轴成轴对称,由于关于y轴对称的点横坐标互为相反数,纵坐标相等,可知的坐标,的坐标,的坐标.【点睛】关于轴对称图形的理解,数形结合23、见详解.【分析】根据AAS证明△ABC≌△ADC即可.【详解】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,∴△ABC≌△ADC(AAS)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSSSSS、SASSAS、ASAASA、AASAAS、HLHL.24、①AC=BD②AC⊥BD都还成立,理由见解析【分析】利用全等三角形的判定方法(SAS)得出△ACO≌△BDO,进而得出AC=BD,再利用三角形内角和定理得出AC⊥BD.【详解】解:①AC=BD②AC⊥BD都还成立,理由如下:如图,设AO、AC与BD分别交于点E、N,∵∠AOB=∠COD=90°,∴∠AOB+∠DOA=∠COD+∠DOA,即∠COA=∠DOB,在△ACO和△BDO中,,∴△ACO≌△BDO(SAS),∴AC=BD,∠OBD=∠OAC,又∵∠BEO=∠AED,∴∠AOB=∠ANE=90°,∴AC⊥BD,综上所述:①AC=BD②AC⊥BD都还成立.【点睛】本题主要考查了全等三角形的判定与性质以及三角形内角和定理,解题的关键是根据已知得出△ACO≌△BDO.25、(1)见解析;(2)AF=GC,理由见解析.【分析】(1)根据直角三角形的性质和角平分线的定义可得∠BED=∠AFB,然后根据对顶角的性质和等量代换可得∠AEF=∠AFB,进一步即可推出结论;(2)如图,过F作FH⊥BC于点H,根据角平分线的性质可得AF=FH,进而可得AE=FH,易得FH∥AE,然后根据平行线的性质可得∠EAG=∠HFC,∠AGE=∠C,进而可根据AAS证明△AEG≌△FHC,再根据全等三角形的性质和线段的和差即可得出结论.【详解】(1)证明:∵∠BAC=90°,∴∠ABF+∠AFB=90°,∵AD⊥BC,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论