七年级数学下学期相期末压轴题易错题模拟检测试题含答案_第1页
七年级数学下学期相期末压轴题易错题模拟检测试题含答案_第2页
七年级数学下学期相期末压轴题易错题模拟检测试题含答案_第3页
七年级数学下学期相期末压轴题易错题模拟检测试题含答案_第4页
七年级数学下学期相期末压轴题易错题模拟检测试题含答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0).(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是;(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围.(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥S△PQN,求出点N纵坐标的取值范围.解析:(1),;(2)或;(3)见解析【分析】(1)分别根据三角形的面积计算△OPA,△DPB,△DPC,△OPD的面积即可;(2)分线段OP在线段EF下方和线段OP在线段EF上方分别求解;(3)画出图形,根据S△PQN=1,得到S△HMN≥,分当xN=0时,当xN=2时,分别结合S△HMN≥,得到不等式,求出N点纵坐标的范围.【详解】解:(1)S△OPA=,则点A是线段OP的“单位面积点”,S△OPB=,则点B不是线段OP的“单位面积点”,S△OPC=,则点C是线段OP的“单位面积点”,S△OPD=,则点D不是线段OP的“单位面积点”,(2)设点G是线段OP的“单位面积点”,则S△OPG=1,∵点E的坐标为(0,3),点F的坐标为(0,4),且点G在线段EF上,∴点G的横坐标为0,∵S△OPG=1,线段OP为y轴向上平移t(t>0)个单位长度,当为单位面积点时,当为单位面积点时,综上所述:1≤t≤2或5≤t≤6;(3)∵M,N是线段PQ的两个单位面积点,∴S△PQM=1,S△PQN=1,∵P(1,0),Q(1,-2),∴PQ=2,∴M,N的横坐标为0或2,∵点M在HQ的延长线上,∴点M的横坐标为xM=2,∵S△HMN≥S△PQN,∴S△HMN≥,当xN=0时,S△HMN=,则,∴或;当xN=2时,S△HMN=,则,∴或.【点睛】本题主要考查三角形的面积公式,并且能够理解单位面积点的定义,解题关键是找到单位面积点的轨迹进行求解.2.如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,且(1)求;(2)若为直线上一点.①的面积不大于面积的,求P点横坐标x的取值范围;②请直接写出用含x的式子表示y.(3)已知点,若的面积为6,请直接写出m的值.解析:(1)4;(2)①或;②;(3)或.【分析】(1)先根据偶次方和绝对值的非负性求出的值,从而可得点的坐标和的长,再利用直角三角形的面积公式即可得;(2)①分和两种情况,先分别求出和的面积,再根据已知条件建立不等式,解不等式即可得;②分和两种情况,利用、和的面积关系建立等式,化简即可得;(3)过点作轴的平行线,交直线于点,从而可得,再分、和三种情况,分别利用三角形的面积公式建立方程,解方程即可得.【详解】解:(1)由题意得:,解得,,,轴轴,;(2)①的面积不大于面积的,的面积小于的面积,则分以下两种情况:如图,当时,则,,因此有,解得,此时的取值范围为;如图,当时,则,,因此有,解得,此时的取值范围为,综上,点横坐标的取值范围为或;②当时,则,,由(2)①可知,,则,即;如图,当时,则,,,,,解得,综上,;(3)过点作轴的平行线,交直线于点,由(2)②可知,,则,由题意,分以下三种情况:①如图,当时,则,,解得,不符题设,舍去;②如图,当时,则,,解得或(不符题设,舍去);③如图,当时,则,,解得,符合题设,综上,的值为或.【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键.3.如图,在平面直角坐标系中,O为坐标原点,点,其中满足,D为直线AB与轴的交点,C为线段AB上一点,其纵坐标为.(1)求的值;(2)当为何值时,和面积的相等;(3)若点C坐标为(-2,1),点M(m,-3)在第三象限内,满足,求m的取值范围.(注:表示的面积)解析:(1);(2)当时,和面积的相等;(3)m的取值范围是【分析】(1)利用非负数的性质求出a,b,c即可.(2)设点D的坐标为(0,y),根据面积关系,构建方程求出y,再根据△BOC和△AOD面积的相等,构建方程求出t即可.(3)分两种情形:①当-2<m<0时,如图1中,②当m≤-2时,如图2中,根据S△MOC≥5,构建不等式求解即可.【详解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)设点D的坐标为(0,y),则S△BOD=×BO×OD=×4×y=2y,S△AOD=xA•OD=×2y=y,S△AOB=×OB•yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即点D的坐标为(0,2),∴S△BOC=BO•yc=×4t=2t,S△AOD=xA•OD=×2×2=2,∵△BOC和△AOD面积的相等,即2t=2,解得t=1,∴当t=1时,△BOC和△AOD面积的相等;(3)①当-2<m<0时,如图1中,过点C作CF⊥轴于点F,过点M作GE⊥轴于点E,过点C作CG⊥轴交GE于点G,则四边形CGEF为矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0−m)×3=−m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8−1−(−m)−2(m+2)=3−m,∵S△MOC≥5,即3−m≥5,解得m≤-4,这与-2<m<0矛盾.②当m≤-2时,如图2中,过点C作GF⊥轴于点F,过点M作ME⊥轴于点E,过点M作MG⊥轴交GF于点G,则四边形MEFG为矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0−m)×3=−m,S△CMG=×(−2−m)×4=−2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=−4m−1−(−m)−[−2(m+2)]=3−m,∵S△MOC≥5,即3−m≥5,解得m≤-4,综上所述,m的取值范围是m≤-4.【点睛】本题考查了坐标与图形的性质,三角形的面积,非负数的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考压轴题.4.对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y﹣t)称为将点P进行“t型平移”,点P'称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如,将点P(x,y)平移到P'(x+1,y﹣1)称为将点P进行“l型平移”,将点P(x,y)平移到P'(x﹣1,y+1)称为将点P进行“﹣l型平移”.已知点A(2,1)和点B(4,1).(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为.(2)①将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.(3)已知点C(6,1),D(8,﹣1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B',当t的取值范围是时,B'M的最小值保持不变.解析:(1)(3,0);(2)①P1;②或;(3)【分析】(1)根据“l型平移”的定义解决问题即可.(2)①画出线段A1B1即可判断.②根据定义求出t最大值,最小值即可判断.(3)如图2中,观察图象可知,当B′在线段B′B″上时,B'M的最小值保持不变,最小值为.【详解】(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为(3,0),故答案为:(3,0);(2)①如图1中,观察图象可知,将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是P1,故答案为:P1;②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是﹣4≤t≤﹣2或t=1.故答案为:﹣4≤t≤﹣2或t=1.(3)如图2中,观察图象可知,当B′在线段B′B″上时,B'M的最小值保持不变,最小值为,此时1≤t≤3.故答案为:1≤t≤3.【点睛】本题属于几何变换综合题,考查了平移变换,“t型平移”的定义等知识,解题的关键理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题,属于中考创新题型.5.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当点P运动到CD上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.解析:(1)(-2,0);(2)①t=2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,z=x+y.【分析】(1)根据平移的性质即可得到结论;(2)①由点C的坐标为(-3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.【详解】解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0);(2)①∵点C的坐标为(-3,2)∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,如图,过P作PF∥BC交AB于F,则PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【点睛】本题考查了坐标与图形的性质,坐标与图形的变化-平移,平行线的性质,正确的作出辅助线是解题的关键.6.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足S△ABC=15.①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;②如图2,若点F(m,10)满足S△ACF=10,求m.(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值.解析:(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24.【分析】(1)根据二次根式和偶次幂的非负性得出a,b解答即可;(2)①根据三角形的面积公式得出点C的坐标,根据平行线的性质解答即可;②延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,根据三角形面积公式解答即可;(3)平移GH到DM,连接HM,根据三角形面积公式解答即可.【详解】解:(1)∵,且,(b﹣4)2≥0,∴a﹣5=0,b﹣4=0,解得:a=5,b=4,∴A(0,5),B(4,0);(2)①连接BE,如图1,∵,∴BC=6,∴C(﹣2,0),∵AB∥CE,∴S△ABC=S△ABE,∴,∴AE=,∴OE=,∴E(0,﹣);②∵F(m,10),∴点F在过点G(0,10)且平行于x轴的直线l上,延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,则M(a,0),如图2,∵S△HCM=S△ACO+S梯形AOMH,∴,解得:a=2,∴H(2,10),∵S△AFC=S△CFH﹣S△AFH,∴,∴FH=4,∵H(2,10),∴F(﹣2,10)或(6,10),∴m=﹣2或6;(3)平移GH到DM,连接HM,则GD∥HM,GD=HM,如图3,四边形BDHG的面积=△BHM的面积,当BH⊥HM时,△BHM的面积最大,其最大值=.【点睛】本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键.7.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点O出发,沿OB→BC→CD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;①当t为多少秒时,点P的横坐标与纵坐标互为相反数;②当t为多少秒时,三角形PEA的面积为2,求此时P的坐标解析:(1)(-2,0);(2)①4秒;②(0,)或(-3,)【分析】(1)根据BC=AE=3,OA=1,推出OE=2,可得结论.(2)①判断出PB=CD,即可得出结论;②根据△PEA的面积以及AE求出点P到AE的距离,结合点P的路线可得坐标.【详解】解:(1)∵C(-3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE-AO=2,∴E(-2,0);(2)①∵点C的坐标为(-3,2)∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD=2,即t=(2+2)÷1=4;∴当t=4秒时,点P的横坐标与纵坐标互为相反数;②∵△PEA的面积为2,A(1,0),E(-2,0),∴AE=3,设点P到AE的距离为h∴,∴h=,即点P到AE的距离为,∴点P的坐标为(0,)或(-3,).【点睛】本题考查坐标与图形变化-平移,三角形的面积等知识,解本题的关键是由线段和部分点的坐标,得出其它点的坐标.8.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)解析:(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.【详解】解:(1)如图1,过点作,则有,,,,;(2)①如图2,过点作,有.,...即,平分,平分,,,.答:的度数为;②如图3,过点作,有.,,...即,平分,平分,,,.答:的度数为.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.9.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.10.如图,直线,点是、之间(不在直线,上)的一个动点.(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点,与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分,平分,已知,求的度数.解析:(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.11.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.(1)如图1,求证:;(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:如图,过点作,∴,∵,∴.∴.∵,∴,∴.(2)补全图形如图2、图3,猜想:或.证明:过点作.∴.∵,∴∴,∴.∵平分,∴.如图3,当点在上时,∵平分,∴,∵,∴,即.如图2,当点在上时,∵平分,∴.∴.即.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.12.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;(问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由.②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系.解析:(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ∥EF,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ∥EF,如图:∵,∴,∴,,∵∴;(2)①;理由如下:如图,过作交于,∵,∴,∴,,∴;②当点在延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;当在之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.13.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为,故答案为:.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.14.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.(1)若时,则___________;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论