




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠市怀远县2026届八年级数学第一学期期末复习检测试题试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁2.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.33.下列各式中,属于同类二次根式的是()A.与 B.与 C.与 D.与4.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B. C. D.5.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④6.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15° B.22.5° C.30° D.45°7.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.8.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和679.若分式的值为0,则x的值是()A.﹣3 B.3 C.±3 D.010.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF11.某射击队进行1000射击比赛,每人射击10次,经过统计,甲、乙两名队员成绩如下:平均成绩都是96.2环,甲的方差是0.25,乙的方差是0.21,下列说法正确的是()A.甲的成绩比乙稳定 B.乙的成绩比甲稳定C.甲乙成绩稳定性相同 D.无法确定谁稳定12.下列运算正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,平分,已知点坐标为,,则的面积为_____________.14.团队游客年龄的方差分别是S甲2=1.4,S乙2=18.8,S丙2=2.5,导游小力最喜欢带游客年龄相近龄的团队,则他在甲、乙、丙三个的中应选_____.15.A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.16.25的平方根是.17.已知m2﹣mn=2,mn﹣n2=5,则3m2+2mn﹣5n2=________.18.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为2x﹣1,3x﹣2,3,若这两个三角形全等,则x=__________.三、解答题(共78分)19.(8分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.20.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.21.(8分)直线与直线垂直相交于,点在射线上运动,点在射线上运动,连接.(1)如图1,已知,分别是和角的平分线,①点,在运动的过程中,的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出的大小.②如图2,将沿直线折叠,若点落在直线上,记作点,则_______;如图3,将沿直线折叠,若点落在直线上,记作点,则________.(2)如图4,延长至,已知,的角平分线与的角平分线交其延长线交于,,在中,如果有一个角是另一个角的倍,求的度数.22.(10分)多边形在直角坐标系中如图所示,在图中分别作出它关于轴、轴的对称图形.23.(10分)如图,在中,以为圆心,为半径画弧,交于,分别以、为圆心,大于的长为半径画弧,交于点,作射线交于点E,若,,求的长为.24.(10分)如图,已知中,,,点为的中点,如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.(1)若点与点的运动速度相等,经过1秒后,与是否全等?请说明理由;(2)若点与点的运动速度不相等,当点的运动速度为多少时,能使与全等?25.(12分)某工厂需要在规定时间内生产1000个某种零件,该工厂按一定速度加工6天后,发现按此速度加工下去会延期4天完工,于是又抽调了一批工人投入这种零件的生产,使工作效率提高了,结果如期完成生产任务.(1)求该工厂前6天每天生产多少个这种零件;(2)求规定时间是多少天.26.如图,已知△ABC(AB<BC),用不带刻度的直尺和圆规完成下列作图.(不写作法,保留作图痕迹(1)在图1中,在边BC上求作一点D,使得BA+DC=BC;(2)在图2中,在边BC上求作一点E,使得AE+EC=BC.
参考答案一、选择题(每题4分,共48分)1、A【分析】先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故选:A.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.2、A【分析】根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴进行分析,得出共有6处满足题意.【详解】选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,6处,选择的位置共有6处.故选:A.【点睛】本题考查了轴对称图形的定义,根据定义构建轴对称图形,成为轴对称图形每种可能性都必须考虑到,不能有遗漏.3、C【分析】化简各选项后根据同类二次根式的定义判断.【详解】A、与的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、与的被开方数不同,所以它们不是同类二次根式;故本选项错误;C、与的被开方数相同,所以它们是同类二次根式;故本选项正确;D、是三次根式;故本选项错误.故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.4、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.5、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.6、C【解析】试题解析:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.7、B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.8、B【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案9、A【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意,得x2﹣9=1且x﹣3≠1,解得,x=﹣3;故选:A.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.10、A【分析】通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.【详解】解:∵∠BAC=45°,BD⊥AC,∴∠CAB=∠ABD=45°,∴AD=BD,∵AB=AC,AE平分∠BAC,∴CE=BE=BC,∠CAE=∠BAE=22.5°,AE⊥BC,∴∠C+∠CAE=90°,且∠C+∠DBC=90°,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,∴△ADF≌△BDC(AAS)∴AF=BC=2CE,故选项C不符合题意,∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°∴∠AHG=67.5°,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意,连接BH,∵AG=BG,DG⊥AB,∴AH=BH,∴∠HAB=∠HBA=22.5°,∴∠EHB=45°,且AE⊥BC,∴∠EHB=∠EBH=45°,∴HE=BE,故选项B不符合题意,故选:A.【点睛】本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.11、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各组数据偏离平均数越小,即波动越小,数据越稳定.据此求解即可.【详解】解:∵甲的方差是0.25,乙的方差是0.21,∴乙的方差<甲的方差,∴乙的成绩比甲稳定.故选:B.【点睛】本题考查了根据方差的意义在实际问题中的简单应用,明确方差的意义是解题的关键.12、C【分析】分别根据积的乘方运算法则、同底数幂的除法法则和完全平方公式计算各项,进而可得答案.【详解】解:A、,故本选项运算错误,不符合题意;B、,故本选项运算错误,不符合题意;C、,故本选项运算正确,符合题意;D、,故本选项运算错误,不符合题意;故选:C.【点睛】本题考查了幂的运算性质和完全平方公式,属于基础题目,熟练掌握基本知识是解题的关键.二、填空题(每题4分,共24分)13、1【分析】过点D作DE⊥AB于点E,由角平分线的性质可得出DE的长,再根据三角形的面积公式即可得出结论.【详解】过点D作DE⊥AB于点E,
∵,
∴OD=2,
∵AD是∠AOB的角平分线,OD⊥OA,DE⊥AB,
∴DE=OD=2,
∴.
故答案为:1.【点睛】本题考查的是角平分线的性质,坐标与图形关系,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.14、甲【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:∵S甲2=1.4,S乙2=18.8,S丙2=2.5,∴S甲2<S丙2<S乙2,∴他在甲、乙、丙三个的中应选甲,故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、1.【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a千米/小时,乙车的速度为b千米/小时,,解得,∴A、B两地的距离为:80×9=720千米,设乙车从B地到C地用的时间为x小时,60x=80(1+10%)(x+2﹣9),解得,x=22,则B、C两地相距:60×22=1(千米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、±1【解析】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±1)2=21,∴21的平方根是±1.17、31【解析】试题解析:根据题意,故有∴原式=3(2+mm)+2mn−5(mn−5)=31.故答案为31.18、1【分析】根据全等三角形的对应边相等得到且或且,然后分别解两方程求出满足条件的的值.【详解】∵△ABC与△DEF全等,
∴且,解得:,
或且,没有满足条件的的值.
故答案为:1.【点睛】本题考查了全等三角形的性质:全等三角形的对应边相等.注意要分类讨论.三、解答题(共78分)19、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,×1000+×1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为1.20、(1)y=(2)75(千米/小时)【分析】(1)先根据图象和题意知道,甲是分段函数,所以分别设0<x≤6时,y=k1x;6<x≤14时,y=kx+b,根据图象上的点的坐标,利用待定系数法可求解.
(2)注意相遇时是在6-14小时之间,求交点时应该套用甲中的函数关系式为y=-75x+1050,直接把x=7代入即可求相遇时y的值,再求速度即可.【详解】(1)①当0<x≤6时,设y=k1x把点(6,600)代入得k1=100所以y=100x;②当6<x≤14时,设y=kx+b∵图象过(6,600),(14,0)两点∴6解得k=-∴y=−75x+1050∴y=(2)当x=7时,y=−75×7+1050=525,V乙=5257=75(千米/小时21、(1)∠ACB的大小不会发生变化,∠ACB=45°;(2)30,60;(3)60°或72°.【分析】(1)①由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;②图2中,由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,根据三角形的内角和即可得到结论;图3中,根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(2)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可解答.【详解】(1)①∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;②∵图2中,将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵图3中,将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30,60;(2)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的倍,故有:①∠EAF=∠E,∠E=60°,∠ABO=120°(不合题意,舍去);②∠EAF=∠F,∠E=30°,∠ABO=60°;③∠F=∠E,∠E=36°,∠ABO=72°;④∠E=∠F,∠E=54°,∠ABO=108°(不合题意,舍去);.∴∠ABO为60°或72°.【点睛】本题主要考查的就是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.同学们在解答这种问题的时候,一定要注意外角与内角之间的联系,不能只关注某一部分.在需要分类讨论的时候一定要注意分类讨论的思想.22、见详解【分析】分别作出各点关于x轴的对称点和各点关于y轴的对称点,再顺次连接即可.【详解】如图,多边形在直角坐标系中关于轴的对称图形是多边形A"B"C"D";多边形在直角坐标系中关于轴的对称图形是多边形A'B'C'D'.【点睛】本题考查的是作图−−轴对称变换,熟知关于坐标轴轴对称的点的坐标特点是解答此题的关键.23、1.【分析】连接FE,由题中的作图方法可知AE为∠BAF的角平分线,结合平行四边形的性质可证明四边形ABEF为菱形,根据菱形对角线互相垂直平分即可求得AE的长.【详解】解:如下图,AE与BF相交于H,连接EF,由题中作图方法可知AE为∠BAD的角平分线,AF=AB,∵四边形为平行四边形,∴AD//BC,∴∠1=∠2,又∵AE为∠BAD的角平分线,∴∠1=∠3,∴∠2=∠3,∴AB=BE,∵AF=AB,∴AF=BE,∵AD//BC∴四边形ABEF为平行四边形∴为菱形,∴AE⊥BF,在Rt△ABH中,根据勾股定理,∴AE=1.【点睛】本题考查平行四边形的性质定理,菱形的性质和判定,角平分线的有关计算,勾股定理.能判定四边形ABEF为菱形,并通过菱形的对角线互相垂直平分构建直角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河北衡水市冀州区招聘第二批社区工作者模拟试卷及答案详解(全优)
- 2025年河北邯郸馆陶县公开招聘(选聘)辅助性岗位工作人员13名模拟试卷附答案详解(考试直接用)
- 2025湖南乡村产业发展有限公司招聘3人模拟试卷及一套答案详解
- 2025年四川省纪委监委公开遴选公务员笔试试题及答案解析
- 2025年潍坊安丘市校园招聘教师(30人)考前自测高频考点模拟试题及答案详解(典优)
- 2025湖南长沙市生态环境局芙蓉分局招聘编外合同制工作人员模拟试卷及答案详解(名校卷)
- 2025应急救援安全知识竞赛题库及答案资源
- 智能科技引领者:TWS耳机电池健康检测行业的市场洞察
- 2025河南新乡市拓晋科技中等专业学校招聘模拟试卷及答案详解(夺冠)
- 2025贵州锦屏经济开发区环卫工人招聘模拟试卷及答案详解(各地真题)
- 科学教育:未来启航
- 金太阳九年级数学月考试卷及答案
- 地质技能竞赛试题及答案
- 现代农业装备与应用课件
- 2024年甘肃省临夏县人民医院公开招聘护理工作人员试题带答案详解
- 2025年氢气传感器市场分析报告
- 结肠癌围手术期的护理
- 环保科技股东合作协议示范文本
- 中职语文(拓展模块)中国科学技术史序言
- 子宫肌瘤教学查房
- 云南省昆明市2023-2024学年高一下学期7月期末质量检测英语试卷(含答案)
评论
0/150
提交评论