




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省清远市阳山县数学九年级第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.方差是刻画数据波动程度的量.对于一组数据,,,…,,可用如下算式计算方差:,其中“5”是这组数据的()A.最小值 B.平均数 C.中位数 D.众数2.下列式子中,为最简二次根式的是()A. B. C. D.3.在平面直角坐标系中,将关于轴的对称点绕原点逆时针旋转得到,则点的坐标是()A. B. C. D.4.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米 B.36米 C.米 D.米5.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234 B.4312 C.3421 D.42316.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC的度数等于()A.50° B.49° C.48° D.47°7.如图,数轴上,,,四点中,能表示点的是()A. B. C. D.8.在中,,则的长为()A. B. C. D.9.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)10.已知正比例函数y=kx的图象经过第二、四象限,则一次函数y=kx﹣k的图象可能是图中的()A. B.C. D.二、填空题(每小题3分,共24分)11.若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_____cm.(结果保留根号)12.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.13.抛物线y=(x﹣1)(x﹣3)的对称轴是直线x=_____.14.半径为4的圆中,长为4的弦所对的圆周角的度数是_________.15.如图,角α的两边与双曲线y=(k<0,x<0)交于A、B两点,在OB上取点C,作CD⊥y轴于点D,分别交双曲线y=、射线OA于点E、F,若OA=2AF,OC=2CB,则的值为______.16.抛物线(a>0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a的取值范围是____.17.已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是___.18.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______三、解答题(共66分)19.(10分)计算:3×÷220.(6分)如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.(1)AD=;(2)如图1,当GF=1时,求的值;(3)如图2,随点G位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.21.(6分)已知,求代数式的值.22.(8分)已知正比例函数y=x的图象与反比例函数y=(k为常数,且k≠0)的图象有一个交点的纵坐标是1.(Ⅰ)当x=4时,求反比例函数y=的值;(Ⅱ)当﹣1<x<﹣1时,求反比例函数y=的取值范围.23.(8分)在正方形中,点是边上一点,连接.图1图2(1)如图1,点为的中点,连接.已知,,求的长;(2)如图2,过点作的垂线交于点,交的延长线于点,点为对角线的中点,连接并延长交于点,求证:.24.(8分)如图1,在和中,顶点是它们的公共顶点,,.(特例感悟)(1)当顶点与顶点重合时(如图1),与相交于点,与相交于点,求证:四边形是菱形;(探索论证)(2)如图2,当时,四边形是什么特殊四边形?试证明你的结论;(拓展应用)(3)试探究:当等于多少度时,以点为顶点的四边形是矩形?请给予证明.25.(10分)已知:如图,在Rt△ABC中,∠ACB=90°,BC="3",tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系(1)求过A、B、O三点的抛物线解析式;(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.26.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣4,1),B(﹣1,2),C(﹣2,4).(1)将△ABC向右平移4个单位后得到△A1B1C1,请画出△A1B1C1,并写出点B1的坐标;(2)△A2B2C2和△A1B1C1关于原点O中心对称,请画出△A2B2C2,并写出点C2的坐标;(3)连接点A和点B2,点B和点A2,得到四边形AB2A2B,试判断四边形AB2A2B的形状(无须说明理由).
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据方差公式的定义即可求解.【详解】方差中“5”是这组数据的平均数.故选B.此题主要考查平均数与方差的关系,解题的关键是熟知方差公式的性质.2、B【分析】利用最简二次根式定义判断即可.【详解】A、原式,不符合题意;B、是最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意;故选B.此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.3、C【分析】先求出点B的坐标,再根据旋转图形的性质求得点的坐标【详解】由题意,关于轴的对称点的坐标为(-1,-4),如图所示,点绕原点逆时针旋转得到,过点B’作x轴的垂线,垂足为点C则OC=4,B’C=1,所以点B’的坐标为故答案选:C.本题考查平面直角坐标系内图形的旋转,把握旋转图形的性质是解题的关键.4、B【分析】求滑下的距离,设出下降的高度,表示出水平高度,利用勾股定理即可求解.【详解】当时,,设此人下降的高度为米,过斜坡顶点向地面作垂线,在直角三角形中,由勾股定理得:,解得.故选:.此题主要考查了坡角问题,理解坡比的意义,使用勾股定理,设未知数,列方程求解是解题关键.5、B【解析】由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.【详解】解:时间由早到晚的顺序为1.
故选B.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.6、A【解析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=12∠AOC=50°故选:A.本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7、C【解析】首先判断出的近似值是多少,然后根据数轴的特征,当数轴方向朝右时,右边的数总比左边的数大,判断出能表示点是哪个即可.【详解】解:∵≈1.732,在1.5与2之间,∴数轴上,,,四点中,能表示的点是点P.故选:C本题考查了在数轴上找表示无理数的点的方法,先求近似数再描点.8、C【分析】根据角的正弦值与三角形边的关系结合勾股定理即可求解.【详解】∵在Rt△ABC中,∠C=90°,,,∴,设,则,∵,即,解得:,∴,故选:C.本题考查了锐角三角函数的定义以及勾股定理,熟记锐角三角函数的定义是解题的关键.9、A【解析】∵线段CD是由线段AB平移得到的,而点A(−1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(−4,−1)的对应点D的坐标为(1,2).故选A10、A【分析】根据正比例函数y=kx的图象经过第二、四象限可判断出k的符号,进而可得出结论.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:A.本题考查的是一次函数的图象与系数的关系,先根据题意判断出k的符号是解答此题的关键.二、填空题(每小题3分,共24分)11、或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有AC=AB=×10=,当AC<BC时,则有BC=AB=×10=,∴AC=AB-BC=10-()=,∴AC长为cm或cm.故答案为:或本题考查了黄金分割点的概念.注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.12、1【分析】由图可知,甲2秒跑了8米,可以求出甲的速度,根据乙100秒跑完了全程可知乙的速度,根据经过时间a秒,乙追上了甲,可列出方程解出a的值.【详解】解:由图象可得:甲的速度为8÷2=4米/秒,根据乙100秒跑完了全程可知乙的速度为:160÷100=1.6米/秒,经过a秒,乙追上甲,可列方程,∴,故答案为:1.本题考查了行程问题中的数量关系的应用,追及问题在生活中的应用,认真分析函数图象的实际意义是解题的关键.13、1【分析】将抛物线的解析式化为顶点式,即可得到该抛物线的对称轴;【详解】解:∵抛物线y=(x﹣1)(x﹣3)=x1﹣4x+3=(x﹣1)1﹣1,∴该抛物线的对称轴是直线x=1,故答案为:1.本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.14、或【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得是等边三角形,再利用圆周角定理,即可得出答案.【详解】.如图所示在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵,∴∴是等边三角形∴∴∴∴所对的圆周角的度数为或故答案为:或.本题考查了圆周角的问题,掌握圆周角定理是解题的关键.15、【解析】过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,分别求出C,E,F的坐标,即可求出的值.【详解】如图:过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,则E(,2a),∵BN∥CM,∴△OCM∽△OBN,∴=,∴BN=3a,∴B(,3a),∴直线OB的解析式y=x,∴C(,2a),∵FH∥AG,∴△OAG∽△OFH,∴,∵FH=OD=2a,∴AG=a,∴A(,a),∴直线OA的解析式y=x,∴F(,2a),∴==,故答案为:本题考查反比例函数图象上点的特征,相似三角形的判定,关键是能灵活运用相似三角形的判定方法.16、0<a<3.【解析】试题解析:∵二次函数的图象与坐标轴分别交于点(0,−3)、(−1,0),∴c=−3,a−b+c=0,即b=a−3,∵顶点在第四象限,又∵a>0,∴b<0,∴b=a−3<0,即a<3,故故答案为点睛:二次函数的顶点坐标为:17、m>1【解析】试题分析:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限.∴m﹣1>0,解得m>1.18、【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】由图象可知:抛物线开口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,,故正确;对称轴为,,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,,故正确.故答案为.本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(共66分)19、【分析】根据二次根式的乘法法则:(a≥0,b≥0)和除法法则:(a≥0,b>0)进行计算即可.【详解】解:原式=本题主要考查二次根式的乘除混合运算,掌握二次根式乘除法的运算法则是解题的关键.20、(1)AD=;(2);(3)FG+EG是一个定值,为.【分析】(1)先由勾股定理求出BC的长,再由直角三角形斜边中线的性质可求出AD的长;(2)先证FG=CG=1,通过BD=CDBC=AD,求出BG的长,再证△BGE∽△BDA,利用相似三角形的性质可求出的值;(3)由(2)知FG=CG,再证EG=BG,即可证FG+EG=BC=2.【详解】(1)∵∠BAC=90°,且BD=CD,∴ADBC.∵BC2,∴AD2.故答案为:;(2)如图1.∵GF∥AD,∴∠CFG=∠CAD.∵BD=CDBC=AD,∴∠CAD=∠C,∴∠CFG=∠C,∴CG=FG=1,∴BG=21.∵AD∥GE,∴△BGE∽△BDA,∴;(3)如图2,随点G位置的改变,FG+EG是一个定值.理由如下:∵ADBC=BD,∴∠B=∠BAD.∵AD∥EG,∴∠BAD=∠E,∴∠B=∠E,∴EG=BG,由(2)知,GF=GC,∴EG+FG=BG+CG=BC=2,∴FG+EG是一个定值,为2.本题考查了直角三角形的性质,相似三角形的判定与性质等,解题的关键是能够灵活运用相似三角形的判定与性质.21、【分析】首先对所求的式子进行化简,把所求的式子化成的形式,然后整体代入求解即可.【详解】解;.,,∴原式.本题考查了整式的化简求值.正确理解完全平方公式的结构,对所求的式子进行化解变形是关键.22、(Ⅰ)1;(Ⅱ)﹣4<y<﹣1.【解析】(Ⅰ)首先把y=1代入直线的解析式,求得交点坐标,然后利用待定系数法求得反比例函数的解析式,最后把x=4代入求解;(Ⅱ)首先求得当x=﹣1和x=﹣1时y的值,然后根据反比例函数的性质求解.【详解】解:(Ⅰ)在y=x中,当y=1时,x=1,则交点坐标是(1,1),把(1,1)代入y=,得:k=4,所以反比例函数的解析式为y=,当x=4,y==1;(Ⅱ)当x=﹣1时,y==﹣1;当x=﹣1时,y==﹣4,则当﹣1<x<﹣1时,反比例函数y=的范围是:﹣4<y<﹣1.此题考查了反比例函数与一次函数的交点问题,以及反比例函数的增减性,两函数的交点即为同时满足两函数解析式的点,其中用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.23、(1);(2)证明见解析.【分析】(1)作于点,由直角三角形斜边上的中线等于斜边的一半可推出,,在中,利用三角函数求出BP,FP,在等腰三角形中,求出BE,再由勾股定理求出AB,进而得到BC和CP,再次利用勾股定理即可求出CF的长度.(2)过作垂直于点,得矩形,首先证明,得,再证明,可推出得.【详解】解:(1)中,为中线,,,.作于点,如图,中,在等腰三角形中,,由勾股定理求得,(2)过作垂直于点,得矩形,∵AB∥CD∴∠MAO=∠GCO在△AMO和△CGO中,∵∠MAO=∠GCO,AO=CO,∠AOM=∠COG∴△AMO≌△CGO(ASA)∴AM=GC∵四边形BCGP为矩形,∴GC=PB,PG=BC=AB∵AE⊥HG∴∠H+∠BAE=90°又∵∠AEB+∠BAE=90°∴∠AEB=∠H在△ABE和△GPH中,∵∠AEB=∠H,∠ABE=∠GPH=90°,AB=PG∴△ABE≌△GPH(AAS)∴BE=PH又∵CG=PB=AM∴BE=PH=PB+BH=CG+BH=AM+BH即AM+BH=BE.本题考查了正方形和矩形的性质,三角函数,勾股定理,以及全等三角形的判定和性质,正确作出辅助线,利用全等三角形对应边相等将线段进行转化是解题的关键.24、(1)见解析;(2)
当∠GBC=30°时,四边形GCFD是正方形.证明见解析;(3)当∠GBC=120°时,以点,,,为顶点的四边形CGFD是矩形.证明见解析.【分析】(1)先证明四边形是平行四边形,再通过证明得出,从而证明四边形是菱形;(2)证法一:如图,连接交于,在上取一点,使得,通过证明,,,从而证明当∠GBC=30°时,四边形GCFD是正方形;证法二:如图,过点G作GH⊥BC于H,通过证明OD=OC=OG=OF,GF=CD,从而证明当∠GBC=30°时,四边形GCFD是正方形;(3)
当∠GBC=120°时,点E与点A重合,通过证明,CD=GF,,从而证明四边形是矩形.【详解】(1),,四边形是平行四边形,在和中,,,四边形是菱形.(2)
当∠GBC=30°时,四边形GCFD是正方形.证法一:如图,连接交于,在上取一点,使得,,,,,,,.,,,,,,,,设,则,,
在Rt△BGK中,,解得,
,,,,,,,四边形是平行四边形,,四边形是矩形,,四边形是正方形.证法二:如图∵,,.又,,,.过点G作GH⊥BC于H,在Rt△BHG中,∵,∴GH=BG=+1,BH=GH=3+,∴HC=BC﹣BH=2+2-(3+)=-1,∴GC=,∴OG=OC===2,∴OD=OF=4-2=2,∴OD=OC=OG=OF,四边形是矩形,∵GF=CD,四边形是正方形.(3)当∠GBC=120°时,以点,,,为顶点的四边形CGFD是矩形.
当∠GBC=120°时,点E与点A重合.,∴,.
∵四边形ABCD和四边形GBEF是平行四边形,∴,,AB=CD,AB=GF,∴,CD=GF,
四边形是平行四边形.∵,四边形是矩形.本题考查了几何的综合应用题,掌握矩形和正方形的性质以及判定、勾股定理、全等三角形的判定是解题的关键.25、(1)y=;(2)当t=时,d有最大值,最大值为2;(3)在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.【解析】(1)在Rt△ABC中,根据∠BAC的正切函数可求得AC=1,再根据勾股定理求得AB,设OC=m,连接OH由对称性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,即得AH=AB-BH=2,OA=1-m.在Rt△AOH中,根据勾股定理可求得m的值,即可得到点O、A、B的坐标,根据抛物线的对称性可设过A、B、O三点的抛物线的解析式为:y=ax(x-),再把B点坐标代入即可求得结果;(2)设直线AB的解析式为y=kx+b,根据待定系数法求得直线AB的解析式,设动点P(t,),则M(t,),先表示出d关于t的函数关系式,再根据二次函数的性质即可求得结果;(3)设抛物线y=的顶点为D,先求得抛物线的对称轴,与抛物线的顶点坐标,根据抛物线的对称性,A、O两点关于对称轴对称.分AO为平行四边形的对角线时,AO为平行四边形的边时,根据平行四边形的性质求解即可.【详解】(1)在Rt△ABC中,∵BC=3,tan∠BAC=,∴AC=1.∴AB=.设OC=m,连接OH由对称性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,∴AH=AB-BH=2,OA=1-m.∴在Rt△AOH中,OH2+AH2=OA2,即m2+22=(1-m)2,得m=.∴OC=,OA=AC-OC=,∴O(0,0)A(,0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东清远市连南瑶族自治县赴高校设点招聘教师29人模拟试卷(含答案详解)
- 2025广东省恩平市引进各类人才(卫生健康系统医共体高层次人才和急需紧缺人才专场)30人模拟试卷及答案详解(名师系列)
- 涂鸦雨伞课件
- 2025广东省云浮市云安区“粤聚英才粤见未来”招聘教育人才9人(南宁师范大学校区专场)模拟试卷及答案详解(网校专用)
- Brand KPIs for clean beauty Forest Essentials in India-外文版培训课件(2025.9)
- 2025北京海淀镇社区卫生服务中心春季招聘15人模拟试卷及一套完整答案详解
- 2025贵州省重点产业人才“蓄水池”第一批岗位专项简化程序招聘187人模拟试卷(含答案详解)
- 2025贵州医科大学附属乌当医院招聘合同制员工6人模拟试卷及答案详解一套
- 2025贵州省水利厅所属事业单位第十三届贵州人才博览会引才模拟试卷及答案详解一套
- 安全培训自我评价简短课件
- 2025年辅警考试真题及答案
- 2025-2026学年统编版五年级上册语文第二单元过关试卷附答案(三套)
- 2025年上海公务员录用考试《行测》真题及答案解析(记忆版)
- 2025年农村土地租赁协议(合同样本)
- 2025年固态变压器(SST)行业研究报告及未来发展趋势预测
- 海上安全培训课课件
- 神经外科重症管理临床指南
- 少年读史记课件
- 铁路客运防寒过冬课件
- 2025至2030中国生物保健品行业项目调研及市场前景预测评估报告
- 急性肺栓塞诊断和治疗指南(2025版)解读
评论
0/150
提交评论