




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届重庆市万州三中学数学九上期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图所示,是二次函数y=ax2﹣bx+2的大致图象,则函数y=﹣ax+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是()A.-1 B.1 C.2 D.33.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65° B.130° C.50° D.100°4.反比例函数的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A. B. C. D.5.在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.6.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.127.下列运算正确的是()A.x6÷x3=x2 B.(x3)2=x5 C. D.8.如图所示,几何体的左视图为()A. B. C. D.9.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为()A. B. C. D.10.如图,抛物线y=ax2+bx+c交x轴分别于点A(﹣3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C.下列结论①2a﹣b=0;②a+b+c=0;③当m≠﹣1时,a﹣b>am2+bm;④当△ABC是等腰直角三角形时,a=;⑤若D(0,3),则抛物线的对称轴直线x=﹣1上的动点P与B、D两点围成的△PBD周长最小值为3,其中,正确的个数为()A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共24分)11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.12.如图,二次函数的图象与轴交于点,与轴的一个交点为,点在抛物线上,且与点关于抛物线的对称轴对称.已知一次函数的图象经过两点,根据图象,则满足不等式的的取值范围是_____________13.(2011•南充)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=_________度.14.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是______________.15.已知点P是正方形ABCD内部一点,且△PAB是正三角形,则∠CPD=_____度.16.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.17.方程ax2+x+1=0有两个不等的实数根,则a的取值范围是________.18.如图,RtΔABC绕直角顶点C顺时针旋转90°,得到ΔDEC,连接AD,若∠BAC=25°,则∠ADE=_________三、解答题(共66分)19.(10分)解一元二次方程:.20.(6分)已知在△ABC中,∠A=∠B=30°.(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使⊙O经过A,C两点;(2)在(1)中所作的图中,求证:BC是⊙O的切线.21.(6分)某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?22.(8分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.23.(8分)如图,在Rt△ABC中,∠ACB90°,∠ABC的平分线BD交AC于点D.(1)求作⊙O,使得点O在边AB上,且⊙O经过B、D两点(要求尺规作图,保留作图痕迹,不写作法);(2)证明AC与⊙O相切.24.(8分)如图,为的直径,、为上两点,且点为的中点,过点作的垂线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)当,时,求的长.25.(10分)⊙O直径AB=12cm,AM和BN是⊙O的切线,DC切⊙O于点E且交AM于点D,交BN于点C,设AD=x,BC=y.(1)求y与x之间的关系式;(2)x,y是关于t的一元二次方程2t2﹣30t+m=0的两个根,求x,y的值;(3)在(2)的条件下,求△COD的面积.26.(10分)如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.
参考答案一、选择题(每小题3分,共30分)1、A【解析】解:∵二次函数y=ax2﹣bx+2的图象开口向上,∴a>0;∵对称轴x=﹣<0,∴b<0;因此﹣a<0,b<0∴综上所述,函数y=﹣ax+b的图象过二、三、四象限.即函数y=﹣ax+b的图象不经过第一象限.故选A.2、A【解析】因为的图象,在每个象限内,y的值随x值的增大而增大,所以k−1<0,即k<1.故选A.3、C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.4、C【分析】根据反比例函数的性质直接判断即可得出答案.【详解】∵反比例函数y=中,当x>0时,y随x的增大而减小,
∴k-1>0,
解得k>1.
故选C.本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.5、B【分析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.6、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.7、D【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A.x6÷x3=x3,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;C.,故本选项不合题意;D.,正确,故本选项符合题意.故选:D.本题主要考查了算术平方根、立方根、同底数幂的除法以及幂的乘方与积的乘方,熟记修改运算法则是解答本题的关键.8、A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形故选:A.本题考查简单组合体的三视图,难度不大.9、D【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为2的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率.【详解】∵点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,∴连接两点所得的所有线段总数n==15条,∵取到长度为2的线段有:FC、AD、EB共3条∴在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为:p=.故选:D此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AD的长是解题关键.10、D【分析】把A、B两点坐标代入抛物线的解析式并整理即可判断①②;根据抛物线的顶点和最值即可判断③;求出当△ABC是等腰直角三角形时点C的坐标,进而可求得此时a的值,于是可判断④;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.【详解】解:把A(﹣3,0),B(1,0)代入y=ax2+bx+c得到,消去c得到2a﹣b=0,故①②正确;∵抛物线的对称轴是直线x=﹣1,开口向下,∴x=﹣1时,y有最大值,最大值=a﹣b+c,∵m≠﹣1,∴a﹣b+c>am2+bm+c,∴a﹣b>am2+bm,故③正确;当△ABC是等腰直角三角形时,C(﹣1,2),可设抛物线的解析式为y=a(x+1)2+2,把(1,0)代入解得a=﹣,故④正确,如图,连接AD交抛物线的对称轴于P,连接PB,则此时△BDP的周长最小,最小值=PD+PB+BD=PD+PA+BD=AD+BD,∵AD==3,BD==,∴△PBD周长最小值为3,故⑤正确.故选D.本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】根据题目中的图形,可以发现〇的变化规律,从而可以得到第2019个图形中〇的个数.【详解】由图可得,第1个图象中〇的个数为:,第2个图象中〇的个数为:,第3个图象中〇的个数为:,第4个图象中〇的个数为:,……∴第2019个图形中共有:个〇,故答案为:1.本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.12、【分析】将点A的坐标代入二次函数解析式求出m的值,再根据二次函数解析式求出点C的坐标,然后求出点B的坐标,点A、B之间部分的自变量x的取值范围即为不等式的解集.【详解】解:抛物线经过点抛物线解析式为点坐标对称轴为x=-2,B、C关于对称轴对称,点坐标由图象可知,满足的的取值范围为故答案为:.本题考查了利用二次函数的性质来确定系数m和图象上点B的坐标,而根据图象可知满足不等式的的取值范围是在B、A两点之间.13、50【解析】∵PA,PB是⊙O是切线,A,B为切点,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案为:50°.14、【分析】直接利用概率公式求解.【详解】解:从袋子中随机取出1个球是红球的概率,故答案为:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15、1【解析】如图,先求出∠DAP=∠CBP=30°,由AP=AD=BP=BC,就可以求出∠PDC=∠PCD=15°,进而得出∠CPD的度数.【详解】解:如图,∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等边三角形,∴AP=BP=AB,∠PAB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=1°.故答案为1.本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时运用三角形内角和定理是关键.16、【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解.【详解】画树状图为:
共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,
故两人一起做同样手势的概率是的概率为.故答案为:.本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.17、且a≠0【解析】∵方程有两个不等的实数根,∴,解得且.18、20°【分析】由题意根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,根据∠ADE=∠CED-∠CAD.【详解】解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到△DEC,∴AC=CD,∠CDE=∠BAC=25°,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠ADE=∠CED-∠CAD=45°-25°=20°.故答案为:20°.本题考查旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确掌握理解图示是解题的关键.三、解答题(共66分)19、【解析】用直配方法解方程即可.【详解】解:原方程可化为:,∴,解得:.20、(1)见解析;(2)见解析【分析】(1)作AC的垂直平分线MN交AB于点O,以O为圆心,OA为半径作⊙O即可.(2)根据题目中给的已知条件结合题(1)所作的图综合应用证明∠OCB=90°即可解决问题.【详解】(1)解:如图,⊙O即为所求.(2)证明:连接OC.∵∠A=∠B=30°,∴∠ACB=180°﹣30°﹣30°=120°,∵MN垂直平分相对AC,∴OA=OC,∴∠A=∠ACO=30°,∴∠OCB=90°,∴OC⊥BC,∴BC是⊙O的切线.本题主要考查的是尺规作图的方法以及圆的综合应用,注意在尺规作图的时候需要保留作图痕迹.21、销售单价为35元时,才能在半月内获得最大利润.【解析】本题考查了二次函数的应用.设销售单价为x元,销售利润为y元.求得方程,根据最值公式求得.解:设销售单价为x元,销售利润为y元.根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000当x==35时,才能在半月内获得最大利润22、(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).【分析】(1)根据待定系数法,可得函数解析式;(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M共线,根据勾股定理,可得答案;(3)根据等腰直角三角形的判定,可得∠BCE,∠ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案.【详解】解:(1)将A(0,3),C(﹣3,0)代入函数解析式,得,解得,抛物线的解析式是y=x2+x+3;(2)由抛物线的对称性可知,点D与点C关于对称轴对称,∴对l上任意一点有MD=MC,联立方程组,解得(不符合题意,舍),,∴B(﹣4,1),当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,过点B作BE⊥x轴于点E,,在Rt△BEC中,由勾股定理,得BC=,|MB﹣MD|取最大值为;(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,在Rt△BEC中,∵BE=CE=1,∴∠BCE=45°,在Rt△ACO中,∵AO=CO=3,∴∠ACO=45°,∴∠ACB=180°﹣45°﹣45°=90°,过点P作PG⊥y轴于G点,∠PGA=90°,设P点坐标为(x,x2+x+3)(x>0)①当∠PAQ=∠BAC时,△PAQ∽△CAB,∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,∴△PGA∽△BCA,∴,即,∴,解得x1=1,x2=0(舍去),∴P点的纵坐标为×12+×1+3=6,∴P(1,6),②当∠PAQ=∠ABC时,△PAQ∽△CBA,∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,∴△PGA∽△ACB,∴,即=3,∴,解得x1=﹣(舍去),x2=0(舍去)∴此时无符合条件的点P,综上所述,存在点P(1,6).本题考查了二次函数综合题,解(1)的关键是利用待定系数法求函数解析式;解(2)的关键是利用两边只差小于第三边得出M,B,C共线;解(3)的关键是利用相似三角形的判定与性质得出关于x的方程,要分类讨论,以防遗漏.23、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线交AB于O,再以O点为圆心,OB为半径作圆即可;(2)证明OD∥BC得到∠ODC=90°,然后根据切线的判定定理可判断AC为⊙O的切线.【详解】解:(1)如图,⊙O为所作;
(2)证明:连接OD,如图,
∵BD平分∠ABC,
∴∠CBD=∠ABD,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠CBD=∠ODB,
∴OD∥BC,
∴∠ODA=∠ACB,
又∠ACB=90°,
∴∠ODA=90°,
即OD⊥AC,
∵点D是半径OD的外端点,
∴AC与⊙O相切.本题考查了作图—复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.24、(1)详见解析;(2).【分析】(1)连接,如图,由点为的中点可得,根据可得,可得,于是,进一步即可得出,进而可证得结论;(2)在中,利用解直角三角形的知识可求得半径的长,进而可得AD的长,然后在中利用∠D的正弦即可求出结果.【详解】解:(1)连接,如图,∵点为的中点,∴,∴.∵,∴,∴.∴.∵,∴.∴,即.∴是的切线;(2)在中,∵,∴设,则,则,解得:.∴,,∴.在中,∵,∴.本题考查了圆的切线的判定、等腰三角形的性质、平行线的判定和性质以及解直角三角形的知识,属于中档题型,熟练掌握上述知识是解题的关键.25、(1)y=;(2)或;(3)1.【分析】(1)如图,作DF⊥BN交BC于F,根据切线长定理得,则DC=DE+CE=x+y,在中根据勾股定理,就可以求出y与x之间的关系式.(2)由(1)求得,由根与系数的关系求得的值,通过解一元二次方程即可求得x,y的值.(3)如图,连接OD,OE,OC,由AM和BN是⊙O的切线,DC切⊙O于点E,得到,,,推出S△AOD=S△ODE,S△OBC=S△COE,即可得出答案.【详解】(1)如图,作DF⊥BN交BC于F;∵AM、BN与⊙O切于点定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年天津市和平区面向甘肃白银会宁籍招聘事业单位工作人员模拟试卷带答案详解
- 2025广东东莞市谢岗镇政府第一食堂招聘厨师长、副厨2人考前自测高频考点模拟试题有答案详解
- 2025年4月四川成都纺织高等专科学校招聘事业编制人员7人模拟试卷参考答案详解
- 2025江苏连云港市灌南县招聘事业单位人员43人考前自测高频考点模拟试题附答案详解(考试直接用)
- 火锅店入股合作合同协议书范本6篇
- 2025河南驻马店市新蔡县公益性岗位招聘7人模拟试卷及答案详解(夺冠系列)
- 2025年醴陵市法院系统招聘真题
- 2025年河北承德辰飞供电服务有限公司招聘101人模拟试卷附答案详解(黄金题型)
- 2025江苏南通市海门区民政局招聘包场镇民政公益性岗位人员招聘2人考前自测高频考点模拟试题及一套参考答案详解
- 2025甘肃特岗教师招聘考试几月份发布?考前自测高频考点模拟试题及答案详解(名师系列)
- 疼痛管理多学科协作模式-洞察分析
- 考研动员讲座
- 光缆通信基础知识
- 氯及其化合物(完整版)课件
- 德胜洋楼公司及德胜员工手册-员工守则
- TCUWA40055-2023排水管道工程自密实回填材料应用技术规程
- 我们要节约粮食 珍惜粮食主题班会
- 2024年铁路运输项目营销策划方案
- 茉莉花常见病虫害及其防治
- 保洁巡查记录表
- 我的家乡湖南永州宣传简介
评论
0/150
提交评论