2026届贵州省凯里市华鑫实验学校九年级数学第一学期期末检测模拟试题含解析_第1页
2026届贵州省凯里市华鑫实验学校九年级数学第一学期期末检测模拟试题含解析_第2页
2026届贵州省凯里市华鑫实验学校九年级数学第一学期期末检测模拟试题含解析_第3页
2026届贵州省凯里市华鑫实验学校九年级数学第一学期期末检测模拟试题含解析_第4页
2026届贵州省凯里市华鑫实验学校九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届贵州省凯里市华鑫实验学校九年级数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列一元二次方程中有两个不相等的实数根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=02.关于抛物线,下列说法错误的是A.开口向上 B.对称轴是y轴C.函数有最大值 D.当x>0时,函数y随x的增大而增大3.下列计算①②③④⑤,其中任意抽取一个,运算结果正确的概率是()A. B. C. D.4.如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是()A. B. C.或 D.或5.已知圆与点在同一平面内,如果圆的半径为5,线段的长为4,则点()A.在圆上 B.在圆内 C.在圆外 D.在圆上或在圆内6.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A. B. C. D.7.有一等腰三角形纸片ABC,AB=AC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是()A.甲 B.乙 C.丙 D.丁8.如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()A.B.C.D.9.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是A. B. C. D.10.下列标志中是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在直角坐标系中,正方形ABCD的边BC在x轴上,其中点A的坐标为(1,2),正方形EFGH的边FG在x轴上,且H的坐标为(9,4),则正方形ABCD与正方形EFGH的位似中心的坐标是_____.12.方程x(x﹣2)﹣x+2=0的正根为_____.13.关于x的方程kx2-4x-=0有实数根,则k的取值范围是.14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.15.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.16.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.17.如图,王师傅在一块正方形钢板上截取了宽的矩形钢条,剩下的阴影部分的面积是,则原来这块正方形钢板的边长是__________cm.18.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.三、解答题(共66分)19.(10分)解方程(1)(用配方法)(2)(3)计算:20.(6分)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和1.利用画树状图或列表求下列事件的概率.(1)从两个口袋中各随机取出1个小球,恰好两个都是奇数;(2)若丙口袋中装有2个相同的小球,它们分别写有数字6和7,从三个口袋中各随机取出一个小球,恰好三个都是奇数.21.(6分)如图,是半径为1的的内接正十边形,平分(1)求证:;(2)求证:22.(8分)如图,△ABC的高AD、BE相交于点F.求证:.23.(8分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.24.(8分)一玩具厂去年生产某种玩具,成本为元/件,出厂价为元/件,年销售量为万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中).用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为________元.求今年这种玩具的每件利润元与之间的函数关系式.设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量.25.(10分)已知二次函数y=ax2+bx﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x在什么范围内,y随x增大而减小?该函数有最大值还是有最小值?求出这个最值.26.(10分)某校在基地参加社会活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留有一个宽为3米的出入口,如图所示.如何设计才能使园地的面积最大?下面是两位同学争议的情境:小军:把它围成一个正方形,这样的面积一定最大.小英:不对啦!面积最大的不是正方形.请根据上面信息,解决问题:(1)设米().①米(用含的代数式表示);②的取值范围是;(2)请你判断谁的说法正确,为什么?

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】解:选项A:△=0,方程有两个相等的实数根;选项B、△=0-12=-12<0,方程没有实数根;选项C、△=4-4×1×(-17)=4+68=72>0,方程有两个不相等的实数根;选项D、△=1-4×5=-19<0,方程没有实数根.故选:C.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac;当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2、C【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】A.因为a=2>0,所以开口向上,正确;B.对称轴是y轴,正确;C.当x=0时,函数有最小值0,错误;D.当x>0时,y随x增大而增大,正确;故选:C考查二次函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.3、A【解析】根据计算结果和概率公式求解即可.【详解】运算结果正确的有⑤,则运算结果正确的概率是,故选:A.考核知识点:求概率.熟记公式是关键.4、D【分析】根据反比例函数和正比例函数的对称性可得,交点A与B关于原点对称,得到B点坐标,再观察图像即可得到的取值范围.【详解】解:∵比例函数和正比例函数的图象交于,两点,∴B的坐标为(1,3)观察函数图像可得,则的取值范围为或.故答案为:D本题考查反比例函数的图像和性质.5、B【分析】由题意根据圆的半径和线段的长进行大小比较,即可得出选项.【详解】解:因为圆的半径为5,线段的长为4,5>4,所以点在圆内.故选B.本题考查同一平面内点与圆的位置关系,根据相关判断方法进行大小比较即可.6、B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.7、D【分析】根据相似三角形的性质求得甲的面积和丙的面积,进一步求得乙和丁的面积,比较即可求得.【详解】解:如图:∵AD⊥BC,AB=AC,∴BD=CD=5+2=7,∵AD=2+1=3,∴S△ABD=S△ACD==∵EF∥AD,∴△EBF∽△ABD,∴=()2=,∴S甲=,∴S乙=,同理=()2=,∴S丙=,∴S丁=﹣=,∵,∴面积最大的是丁,故选:D.本题考查了三角形相似的判定和性质,相似三角形面积的比等于相似比的平方.解题的关键是熟练掌握相似三角形的判定和性质进行解题.8、C【解析】设圆的半径为,连接,求出,根据CA⊥AB,求出,即可求出函数的解析式为.【详解】设:圆的半径为,连接,则,,即是圆的切线,则,则则图象为开口向下的抛物线,故选:.本题考查了圆、三角函数的应用,熟练掌握函数图像是解题的关键.9、B【解析】分析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值:tan∠AOB=.故选B.10、B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;

B、是中心对称图形,符合题意;

C、既不是轴对称图形,也不是中心对称的图形,不合题意;

D、是轴对称图形,不是中心对称的图形,不合题意.

故选:B.本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.二、填空题(每小题3分,共24分)11、(﹣3,0)或(,)【分析】连接HD并延长交x轴于点P,根据正方形的性质求出点D的坐标为(3,2),证明△PCD∽△PGH,根据相似三角形的性质求出OP,另一种情况,连接CE、DF交于点P,根据待定系数法分别求出直线DF解析式和直线CE解析式,求出两直线交点,得到答案.【详解】解:连接HD并延长交x轴于点P,则点P为位似中心,∵四边形ABCD为正方形,点A的坐标为(1,2),∴点D的坐标为(3,2),∵DC//HG,∴△PCD∽△PGH,∴,即,解得,OP=3,∴正方形ABCD与正方形EFGH的位似中心的坐标是(﹣3,0),连接CE、DF交于点P,由题意得C(3,0),E(5,4),D(3,2),F(5,0),求出直线DF解析式为:y=﹣x+5,直线CE解析式为:y=2x﹣6,解得直线DF,CE的交点P为(,),所以正方形ABCD与正方形EFGH的位似中心的坐标是(,),故答案为:(﹣3,0)或(,).本题考查的是位似变换的概念和性质、相似三角形的判定和性质,位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.12、x=1或x=2【分析】利用提取公因式法解方程即可得答案.【详解】∵x(x﹣2)﹣(x﹣2)=0,∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,解得:x=2或x=1,故答案为:x=1或x=2本题考查解一元二次方程,一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.13、k≥-1【解析】试题分析:当k=0时,方程变为一元一次方程,有实数根;当k≠0时,则有△=(-4)2-4×(-)k≥0,解得k≥-1;综上可得k≥-1.考点:根的判别式.14、57.5【分析】根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.15、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球,∴摸出一个球摸到红球的概率为:,故答案为:.本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.16、【解析】试题解析:连接∵四边形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴阴影部分的面积是S=S扇形CEB′−S△CDE故答案为17、【分析】设原来正方形钢板的边长为xcm,根据题意可知阴影部分的矩形的长和宽分别为xcm,(x-4)cm,然后根据题意列出方程求解即可.【详解】解:设原来正方形钢板的边长为xcm,根据题意可知阴影部分的矩形的长和宽分别为xcm,(x-4)cm,根据题意可得:整理得:解得:(负值舍去)故答案为:12.本题考查一元二次方程的应用,根据题意列出阴影部分的面积的方程是本题的解题关键.18、π﹣1.【详解】解:在Rt△ACB中,AB==,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC==π﹣1.故答案为π﹣1.考点:扇形面积的计算.三、解答题(共66分)19、(1),;(2),;(3)【分析】(1)方程整理配方后,开方即可求出解;(2)把方程左边进行因式分解,求方程的解;(3)根据二次根式、特殊角的三角函数值、0次幂、负整数指数幂的运算法则计算即可.【详解】(1),方程整理得:,配方得:,即,开方得:,解得:,;(2),,即,∴或,解得:,;(3).本题主要考查了解一元二次方程-配方法、因式分解法以及实数的混合运算,特殊角的三角函数值,熟练掌握一元二次方程的各种解法以及熟记特殊角的三角函数值是解题的关键.20、(1)图表见解析,;(2)图表见解析,【分析】(1)通过列表可得出所有等可能的结果数与取出的两个都是奇数的结果数,再利用概率公式求解即可;(2)通过画树状图可得出所有等可能的结果数与取出的三个都是奇数的结果数,再利用概率公式求解即可.【详解】解:(1)根据题意列表如下:乙甲123(1,3)(2,3)4(1,4)(2,4)1(1,1)(2,1)由表格可得所有等可能的结果有6种,其中两个都是奇数的可能有两种,∴P(两个奇数)=;(2)根据题意画树状图如下:由树状图可得所有等可能的结果有12种,其中三个都是奇数的可能有两种,∴P(两个奇数)=.本题考查的知识点是利用画树状图或列表求事件的概率,比较简单,易于掌握.21、(1)详见解析;(2)详见解析【分析】(1)根据题意得出角相等得出△A1A2P∽△A1OA2,再根据相似三角形的性质即可得出答案;(2)设A1A2=x,得出OP=PA2=A1A2=x,A1P=1-x,再代入中即可求出答案.【详解】证明:(1)∵A1A2A3…A10是半径为1的⊙O的内接正十边形,A2P平分∠OA2A1∴∠A1OA2=36°,∠A1=∠OA2A1=72°,∠A1A2P=∠O=36°∴∠A1PA2=72°,OP=PA2,∴△A1A2P∽△A1OA2,∴A1A22=A1P•OA1(2)设A1A2=x,则OP=PA2=A1A2=x,∴A1P=1-x,由(1)得A1A22=A1P•OA1∴,∴,解得,(负值舍去)∴,即本题考查了正十边形的性质及相似三角形的判定及性质定理,能够根据正十边形的性质得出角的度数是解题的关键.22、见解析【分析】由题意可证△AEF∽△BDF,可得,即可得.【详解】解:证明:∵AD,BE是△ABC的高,

∴∠ADB=∠AEF=90°,且∠AFE=∠BFD,∴△AEF∽△BDF,∴,

∴.本题考查了相似三角形的判定与性质,熟练运用相似三角形的性质是本题的关键.23、(1)图形见解析,点坐标;(2)作图见解析,,,的坐标分别是【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标;(2)由关于原点中心对称性画,可确定写出,,的坐标.【详解】解:(1),把向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系,C(3,-3);(2)分别找到的对称点,,,顺次连接,,,即为所求,如图所示,(-2,1),(-1,4),(-3,3).本题考查了作图-旋转变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24、10+7x12+6x【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10×0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12×0.5x)元/件;

(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)-(10+7x),然后整理即可;

(3)今年的年销售量为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论