




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市嘉定区数学九年级第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为,则下面所列方程正确的是()A. B.C. D.2.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()A. B. C. D.3.如图,为的直径,为上两点,若,则的大小为().A.60° B.50° C.40° D.20°4.已知是关于的一个完全平方式,则的值是().A.6 B. C.12 D.5.已知⊙O的半径为4,圆心O到弦AB的距离为2,则弦AB所对的圆周角的度数是()A.30° B.60°C.30°或150° D.60°或120°6.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(
).A. B. C. D.7.如图,在正方形中,是的中点,是上一点,,则下列结论正确的有()①②③④∽A.1个 B.2个 C.3个 D.4个8.如图所示,在中,,,,则长为()A. B. C. D.9.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到颜色相同的球的概率为()A. B. C. D.10.若点都是反比例函数图像上的点,并且,则下列结论中正确的是()A. B.C.随的增大而减小 D.两点有可能在同一象限11.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形 B.正三角形 C.平行四边形 D.正方形12.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球(
)A.32个 B.36个 C.40个 D.42个二、填空题(每题4分,共24分)13.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知,则_______.14.如果函数是二次函数,那么k的值一定是________.15.一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的三角形的最长边为____________.16.如果方程x2+4x+n=0可以配方成(x+m)2=3,那么(n﹣m)2020=_____.17.某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C距离地面的高度为2.5m,宽度AB为1m,则该圆形门的半径应为_____m.18.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为.三、解答题(共78分)19.(8分)(1)计算:(2)解不等式:20.(8分)(1)计算:2sin30°+cos30°•tan60°.(2)已知,且a+b=20,求a,b的值.21.(8分)如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点,其顶点为点,点的坐标为(0,-1),该抛物线与交于另一点,连接.(1)求该抛物线的解析式,并用配方法把解析式化为的形式;(2)若点在上,连接,求的面积;(3)一动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动,连接,,设运动时间为秒(>0),在点的运动过程中,当为何值时,?22.(10分)有5张不透明的卡片,除正面上的图案不同外,其它均相同.将这5张卡片背面向上洗匀后放在桌面上.若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.23.(10分)如图,在边长为的正方形中,点是射线上一动点(点不与点重合),连接,点是线段上一点,且,连接.求证:;求证:;直接写出的最小值.24.(10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.25.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.26.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
参考答案一、选择题(每题4分,共48分)1、D【分析】由题意设每年的增长率为x,那么第一年的产值为3500(1+x)万元,第二年的产值3500(1+x)(1+x)万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x,依题意得3500(1+x)(1+x)=5300,即.故选:D.本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.2、D【解析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可直接选出答案.【详解】在正方形、矩形、菱形、平行四边形中,其中都是中心对称图形,故共有个中心对称图形.故选D.本题考查了中心对称图形,正确掌握中心对称图形的性质是解题的关键.3、B【分析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,∵为的直径,∴.∵,∴,∴.故选B.本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.4、B【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍,故m=±1.【详解】∵(x±3)2=x2±1x+32,∴是关于的一个完全平方式,则m=±1.故选:B.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.5、D【分析】根据题意作出图形,利用三角形内角和以及根据圆周角定理和圆内接四边形的性质进行分析求解.【详解】解:如图,∵OH⊥AB,OA=OB=4,∴∠AHO=90°,在Rt△OAH中,sin∠OAH=∴∠OAH=30°,∴∠AOB=180°-30°-30°=120°,∴∠ACB=∠AOB=60°,∠ADB=180°-∠ACB=120°(圆内接四边形的性质),即弦AB所对的圆周角的度数是60°或120°.故选:D.本题考查圆周角定理,圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、D【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.考点:1.平行线分线段成比例;2.相似三角形的判定与性质.7、B【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.【详解】∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,
∴△BAE∽△CEF,∴∵是的中点,∴BE=CE∴CE2=AB•CF,∴②正确;
∵BE=CE=BC,∴CF=BE=CD,故③错误;∵∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,
∴AE=2a,EF=a,AF=5a,∴∴∴△ABE∽△AEF,故④正确.
∴②与④正确.
∴正确结论的个数有2个.
故选:B.此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.8、B【分析】先根据同角的三角函数值的关系得出,解出AC=5,再根据勾股定理得出AB的值.【详解】在中,,,,即.又AC=5===3.故选B.本题考查了三角函数的值,熟练掌握同角的三角函数的关系是解题的关键.9、C【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可【详解】解:两次摸球的所有的可能性树状图如下:
共有4种等可能的结果,其中两次都摸到颜色相同的球结果共有2种,
∴两次都摸到颜色相同的球的概率为.
故选C.本题考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.10、A【分析】根据反比例函数的图象及性质和比例系数的关系,即可判断C,然后根据即可判断两点所在的象限,从而判断D,然后判断出两点所在的象限即可判断B和A.【详解】解:∵中,-6<0,∴反比例函数的图象在二、四象限,在每一象限,y随x的增大而增大,故C错误;∵∴点在第四象限,点在第二象限,故D错误;∴,故B错误,A正确.故选A.此题考查的是反比例函数的图象及性质,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键.11、D【分析】在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.【详解】根据定义可得A、B为轴对称图形;C为中心对称图形;D既是轴对称图形,也是中心对称图形.故选:D.考点:轴对称图形与中心对称图形12、A【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】设盒子里有白球x个,
根据得:解得:x=1.
经检验得x=1是方程的解.
答:盒中大约有白球1个.
故选;A.此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.二、填空题(每题4分,共24分)13、1【分析】根据题意求得,根据平行线分线段成比例定理解答.【详解】∵,∴=1,∵l1∥l1∥l3,∴==1,故答案为:1.本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.14、-1【解析】根据二次函数的定义判定即可.【详解】∵函数是二次函数,∴k2-7=2,k-1≠0解得k=-1.故答案为:-1.此题主要考查了二次函数的定义,正确把握二次函数的定义是解题关键.15、18cm.【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案.【详解】解:∵一个三角形的三边之比为3:6:4,∴与它相似的三角形的三边之比为3:6:4,∵与它相似的三角形的周长为39cm,∴与它相似的三角形的最长边为:39×=18(cm).
故答案为:18cm.此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例.16、1【分析】已知配方方程转化成一般方程后求出m、n的值,即可得到结果.【详解】解:由(x+m)2=3,得:
x2+2mx+m2-3=0,
∴2m=4,m2-3=n,
∴m=2,n=1,
∴(n﹣m)2020=(1﹣2)2020=1,
故答案为:1.此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.17、【分析】过圆心作弦AB的垂线,运用垂径定理和勾股定理即可得到结论.【详解】过圆心点O作OE⊥AB于点E,连接OC,∵点C是该门的最高点,∴,∴CO⊥AB,∴C,O,E三点共线,连接OA,∵OE⊥AB,∴AE==0.5m,设圆O的半径为R,则OE=2.5-R,∵OA2=AE2+OE2,∴R2=(0.5)2+(2.5-R)2,解得:R=,故答案为.本题考查了垂径定理,勾股定理,正确的作出辅助线是解题的关键.18、【分析】△ABC绕点O逆时针旋转一周需6秒,而2018=6×336+2,所以第2018秒时,点A旋转到点A′,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,然后通过解直角三角形求出A′H和OH即可得到A′点的坐标.【详解】解:∵360°÷60°=6,2018=6×336+2,∴第2018秒时,点A旋转到点B,如图,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,∵∠A′OH=30°,∴A′H=OA′=,OH=A′H=,∴A′(﹣,﹣).故答案为(﹣,﹣).考核知识点:解直角三角形.结合旋转和解直角三角形知识解决问题是关键.三、解答题(共78分)19、(1)4;(2).【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式=4;(2),,,.此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.20、(1);(2)a=8,b=12【分析】(1)代入特殊角的三角函数值,根据二次根式的运算法则计算即可;(2)设=k,即a=2k,b=3k,代入a+b=20,求出k的值,即可求出a,b的值.【详解】(1)原式==1+=;(2)设=k,即a=2k,b=3k,代入a+b=20,得2k+3k=20,∴k=4,∴a=8,b=12.本题考查了特殊角的三角函数值,实数的混合运算,比例的性质,熟练掌握各知识点是解答本题的关键.21、(1);(2);(3)【解析】(1)将A,B两点的坐标代入抛物线解析式中,得到关于a,b的方程组,解之求得a,b的值,即得解析式,并化为顶点式即可;(2)过点A作AH∥y轴交BC于H,BE于G,求出直线BC,BE的解析式,继而可以求得G、H点的坐标,进一步求出GH,联立BE与抛物线方程求出点F的坐标,然后根据三角形面积公式求出△FHB的面积;(3)设点M坐标为(2,m),由题意知△OMB是直角三角形,进而利用勾股定理建立关于m的方程,求出点M的坐标,从而求出MD,最后求出时间t.【详解】(1)∵抛物线与轴交于A(1,0),B(3,0)两点,∴∴∴抛物线解析式为.(2)如图1,
过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直线BC解析式为y=x-2,∵H(1,y)在直线BC上,∴y=-,∴H(1,-),∵B(3,0),E(0,-1),∴直线BE解析式为y=-x-1,∴G(1,-),∴GH=,∵直线BE:y=-x-1与抛物线y=-x2+x-2相较于F,B,∴F(,-),∴S△FHB=GH×|xG-xF|+GH×|xB-xG|=GH×|xB-xF|=××(3-)=.(3)如图2,由(1)有y=-x2+x-2,∵D为抛物线的顶点,∴D(2,),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M(2,m),(m>),∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m=或m=-(舍),∴M(2,),∴MD=-,∴t=-.本题考查了待定系数法求二次函数的表达式,待定系数法求一次函数表达式,角平分线上的点到两边的距离相等,勾股定理等知识点,综合性比较强,不仅要掌握性质定理,作合适的辅助线也对解题起重要作用.22、【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:在这些图形中,B,C,E是轴对称图形,画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,两次所抽取的卡片恰好都是轴对称图形的概率为.本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23、(1)证明见解析;(2)证明见解析;(3)的最小值为【分析】(1)由得出,进而得出,即可得出;(2)首先由正方形的性质得出,,然后由(1)中结论得出,进而即可判定,进而得出(3)首先由(1)中得出,然后构建圆,找出DE的最小值即可得解.【详解】∵四边形是正方形由(1)知,又由(1)中,得若使有最小值,则DE最小,由(2)中,点E在以AB为直径的圆上,如图所示∴DE最小值为DO-OE=∴的最小值为此题主要考查相似三角形的性质,以及动点综合问题,解题关键是找出最小值.24、(1)见解析;(2)EM=【分析】(1)通过证明四边形AHGD是平行四边形,可得AH=DG,AD=HG=CD,由“SAS”可证△DCG≌△HGF,可得DG=HF,∠HFG=∠HGD,可证AH⊥HF,AH=HF,即可得结论;
(2)由题意可得DE=2,由平行线分线段成比例可得,即可求EM的长.【详解】证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG,∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD,∵CD=HG,∠ECG=∠CGF=90°,FG=CG,∴△DCG≌△HGF(SAS),∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°,∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG,∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=1,∴AD=CD=3,DE=2,EF=1.∵AD∥EF,∴,且DE=2.∴EM=.本题考查了正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,平行线分线段成比例等知识点,综合性较强难度大灵活运用这些知识进行推理是本题的关键.25、(1)2m﹣1;(2)C2:y=x2﹣4x;(3)0<a或a≥1或a≤﹣.【分析】(1)C1:y=ax2−2ax−3a=a(x−1)2−4a,顶点(1,−4a)围绕点P(m,0)旋转180°的对称点为(2m−1,4a),即可求解;(2)分≤t<1、1≤t≤、t>三种情况,分别求解,(3)分a>0、a<0两种情况,分别求解.【详解】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农村集体产权制度改革数据备份管理考核试卷
- 2025年物流行业物流碳捕捉技术试点合规考核试卷
- 2025年旅游服务礼仪与服务流程优化方法考核试卷
- 2025年物流数字化转型数据销毁流程规范合规考核试卷
- 游戏保密协议书
- 协议书控制饮食
- 协议书离婚多久
- 建筑咨询公司运营方案
- 虹口区聚会活动策划方案
- 协议书房是什么
- 2025年全国新闻记者职业资格考试新闻采编实务试题及答案
- GB 46031-2025可燃粉尘工艺系统防爆技术规范
- 心脏外科开科宣教
- 质量攻关项目汇报
- 移动患者的体位安全护理
- T/DGGC 005-2020全断面隧道掘进机再制造检测与评估
- 手机媒体概论(自考14237)复习题库(含真题、典型题)
- 消化内科护理进修汇报
- 人类辅助生殖技术质量监测与评价规范
- 青年上香行为的社会文化动机与影响研究
- 2024年中国建设银行招聘笔试真题
评论
0/150
提交评论