安徽省合肥市长丰县2026届数学九年级第一学期期末统考试题含解析_第1页
安徽省合肥市长丰县2026届数学九年级第一学期期末统考试题含解析_第2页
安徽省合肥市长丰县2026届数学九年级第一学期期末统考试题含解析_第3页
安徽省合肥市长丰县2026届数学九年级第一学期期末统考试题含解析_第4页
安徽省合肥市长丰县2026届数学九年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市长丰县2026届数学九年级第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.2.如图,在中,是边上的点,以为圆心,为半径的与相切于点,平分,,,的长是()A. B.2 C. D.3.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥4.下列各式中,均不为,和成反比例关系的是()A. B. C. D.5.若将抛物线的函数图象先向右平移1个单位,再向下平移2个单位后,可得到一个新的抛物线的图象,则所得到的新的抛物线的解析式为()A. B.C. D.6.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A.1个 B.2个 C.3个 D.4个7.对于抛物线,下列说法正确的是()A.开口向下,顶点坐标 B.开口向上,顶点坐标C.开口向下,顶点坐标 D.开口向上,顶点坐标8.已知P是△ABC的重心,且PE∥BC交AB于点E,BC=,则PE的长为().A. B. C. D.9.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60° B.75° C.85° D.90°10.下列命题:①长度相等的弧是等弧;②任意三点确定一个圆;③相等的圆心角所对的弦相等;④平分弦的直径垂直于弦,并且平分弦所对的两条弧;其中真命题共有()A.0个 B.1个 C.2个 D.3个11.如图,在5×6的方格纸中,画有格点△EFG,下列选项中的格点,与E,G两点构成的三角形中和△EFG相似的是()A.点A B.点B C.点C D.点D12.下列命题正确的是()A.矩形的对角线互相垂直平分B.一组对角相等,一组对边平行的四边形一定是平行四边形C.正八边形每个内角都是D.三角形三边垂直平分线交点到三角形三边距离相等二、填空题(每题4分,共24分)13.某校棋艺社开展围棋比赛,共位学生参赛.比赛为单循环制,所有参赛学生彼此恰好比赛一场.记分规则为:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,若所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的,则__________.14.如图,等边边长为2,分别以A,B,C为圆心,2为半径作圆弧,这三段圆弧围成的图形就是著名的等宽曲线——鲁列斯三角形,则该鲁列斯三角形的面积为___________.15.在这三个数中,任选两个数的积作为的值,使反例函数的图象在第二、四象限的概率是______.16.如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′的面积比是_____.17.如图,将Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,使AB′恰好经过点C,连接BB′,则∠BAC′的度数为_____°.18.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.三、解答题(共78分)19.(8分)已知如下图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点,按照的规律变换得到,请你在图1中画出.(2)在图2中画出一个与格点相似但相似比不等于1的格点.(说明:顶点都在网格线交点处的三角形叫做格点三角形.)20.(8分)先化简,再求值:,其中.21.(8分)如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:.22.(10分)如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:;(2)若,求.(3)如图2,在(2)的条件下,连接CF,求的值.23.(10分)有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.24.(10分)为了创建文明城市,增弘环保意识,某班随机抽取了8名学生(分别为A,B,C,D,E,F,G,H),进行垃圾分类投放检测,检测结果如下表,其中“√”表示投放正确,“×”表示投放错误,学生垃圾类别ABCDEFGH可回收物√××√√×√√其他垃圾×√√√√×√√餐厨垃圾√√√√√√√√有害垃圾×√×××√×√(1)检测结果中,有几名学生正确投放了至少三类垃圾?请列举出这几名学生.(2)为进一步了解学生垃圾分类的投放情况,从检测结果是“有害垃圾”投放错误的学生中随机抽取2名进行访谈,求抽到学生A的概率.25.(12分)如图,分别是的边,上的点,,,,,求的长.26.车辆经过某市收费站时,可以在4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.2、A【分析】由切线的性质得出求出,证出,得出,得出,由直角三角形的性质得出,得出,再由直角三角形的性质即可得出结果.【详解】解:∵与AC相切于点D,故选A.本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出是解题的关键.3、D【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【详解】解:主视图和左视图都是三角形,此几何体为椎体,俯视图是一个圆,此几何体为圆锥.故选:D.本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.4、B【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【详解】解:A.,则,x和y不成比例;B.,即7yx=5,是比值一定,x和y成反比例;C.,x和y不成比例;D.,即y:x=5:8,是比值一定,x和y成正比例.故选B.此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.5、C【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将抛物线先向右平移1个单位可得到抛物线;由“上加下减”的原则可知,将抛物线先向下平移2个单位可得到抛物线.

故选:C.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:从左数第一、四个是轴对称图形,也是中心对称图形.第二是轴对称图形,不是中心对称图形,第三个图形是中心对称图形不是轴对称图形.故选B.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、A【详解】∵抛物线∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.8、A【分析】如图,连接AP,延长AP交BC于D,根据重心的性质可得点D为BC中点,AP=2PD,由PE//BC可得△AEP∽△ABD,根据相似三角形的性质即可求出PE的长.【详解】如图,连接AP,延长AP交BC于D,∵点P为△ABC的重心,BC=,∴BD=BC=,AP=2PD,∴,∵PE//BC,∴△AEP∽△ABD,∴,∴PE===.故选:A.本题考查三角形重心的性质及相似三角形的判定与性质,三角形的重心是三角形三条中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1;正确作出辅助线,构造相似三角形是解题关键.9、C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点:旋转的性质.10、A【分析】由等弧的概念判断①,根据不在一条直线上的三点确定一个圆,可判断②;根据圆心角、弧、弦的关系判断③,根据垂径定理判断④.【详解】①同圆或等圆中,能够互相重合的弧是等弧,故①是假命题;②不在一条直线上的三点确定一个圆,若三点共线,则不能确定圆,故②是假命题;③同圆或等圆中,相等的圆心角所对的弦相等,故③是假命题;④圆两条直径互相平分,但不垂直,故④是假命题;所以真命题共有0个,故选A.本题考查圆中的相关概念,熟记基本概念才能准确判断命题真假.11、D【分析】根据网格图形可得所给△EFG是两直角边分别为1,2的直角三角形,然后利用相似三角形的判定方法选择答案即可.【详解】解:观察图形可得△EFG中,直角边的比为,观各选项,,只有D选项三角形符合,与所给图形的三角形相似.故选:D.本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.12、B【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:,,求证:四边形ABCD是平行四边形.证明:∵,∴,∵,∴,∴,又∵,∴四边形ABCD是平行四边形,∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:,故原命题错误;D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.故选:B.本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.二、填空题(每题4分,共24分)13、1【分析】设分出胜负的有x场,平局y场,根据所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的列出方程与不等式,根据x,y为非负整数,得到一组解,根据m为正整数,且判断出最终的解.【详解】设分出胜负的有x场,平局y场,由题意知,,解得,,∵x,y为非负整数,∴满足条件的解为:,,,,∵,此时使m为正整数的解只有,即,故答案为:1.本题考查了二元一次方程,一元一次不等式,一元二次方程的综合应用,本题注意隐含的条件,参赛学生,胜利的场数,平局场数都为非负整数.14、【分析】求出一个弓形的面积乘3再加上△ABC的面积即可.【详解】过A点作AD⊥BC,∵△ABC是等边三角形,边长为2,∴AC=BC=2,CD=BC=1∴AD=∴弓形面积=.故答案为:本题考查的是阴影部分的面积,掌握扇形的面积计算及等边三角形的面积计算是关键.15、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出k为负值的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k的值,k为负数的有4种,∴反比例函数的图象在第二、四象限的概率是:.

故答案为:.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16、1:1.【解析】根据位似变换的性质定义得到四边形ABCD与四边形A′B′C′D′相似,根据相似多边形的性质计算即可.【详解】解:以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′相似,相似比为1:2,∴四边形ABCD与四边形A′B′C′D′的面积比是1:1,故答案为:1:1.本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.17、1【分析】由图形选择的性质,∠BAC=∠B′AC′则问题可解.【详解】解:∵Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,使AB′恰好经过点C,∴∠BAC=∠B′AC′=40°,∴∠BAC′=∠BAC+∠B′AC′=1°,故答案为:1.本题考查了图形旋转的性质,解答关键是应用旋转过程中旋转角不变的性质.18、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【详解】∵a+b2=2,

∴b2=2-a,a≤2,

∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,

当a=2时,

a2+b2可取得最小值为1.

故答案是:1.考查了二次函数的最值,解题关键是根据题意得出a2+5b2=(a-.三、解答题(共78分)19、(2)详见解析;(2)详见解析【分析】(2)按题中要求,把图形上的每个关键点图2中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A2B2C2单位后,依次连接各个关键点,即可得出要画的图形;(2)根据平移作图的规律作图即可做个位似图形即可,相似比可以是2:2.【详解】(2)如图2.(2)如图2.(答案不唯一)本题考查了作图-平移变换、作图-位似图形,根据要求作图是解题的关键.20、;.【分析】根据分式的运算法则即可化简,再代入a即可求解.【详解】解:原式把代入上式,得:原式此题主要考查分式的运算,解题的关键是熟知分式运算法则.21、见解析.【分析】根据两角相等的两个三角形相似证明△ADC∽△BEC即可.【详解】证明:∵AD,BE分别是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(对顶角相等)∴△ADC∽△BEC∴.本题考查了相似三角形的判定,熟练掌握形似三角形的判定方法是解答本题的关键.①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.22、(1)见解析;(2);(3)【分析】(1)由等角对等边可得,再由对顶角相等推出,然后利用等角的余角相等即可得证;(2)在中,利用勾股定理可求出BD=10,然后由等角对等边得到,进而求出BP=2,再利用推出,由垂直平分线推出,即可得到的值;(3)连接CG,先由勾股定理求出,由(2)的条件可推出BE=DG,再证明△ABE≌△CDG,从而求出,并推出,最后在中,即可求出的值.【详解】(1)证明:,∵MN⊥AP∴∠GFE=90°∴∠BGN+∠GEF=90°又(2)在矩形ABCD中,∴在中,又∵在矩形ABCD中,∴∵MN垂直平分AP(3)如图,连接CG,在中,在中,又∵在矩形ABCD中,在△ABE和△CDG中,∵AB=DC,∠ABE=∠CDG,BE=DG∴在中,本题考查了矩形的性质和等腰三角形的性质,全等三角形,相似三角形的判定和性质,以及三角函数,熟练掌握矩形的性质推出相似三角形与全等三角形是解题的关键.23、(1)所有结果:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2).【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【详解】(1)根据题意画出树状图如下:结果为:(-1,-1),(-1,1),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论