




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中苏教七年级下册期末数学测试试卷经典及答案解析一、选择题1.下列运算错误的是()A. B.C. D.2.在下列图形中,与是内错角的是()A. B. C. D.3.关于x的方程2x+3m=x的解是非负数,则m的取值范围是()A.m≤0 B.m≥0 C.m≤1 D.m≤4.已知a>b,则下列各式的判断中一定正确的是()A.3a>3b B.3-a>3-b C.-3a>-3b D.5.已知关于的不等式组的解集为,则为()A.1 B.3 C.4 D.-16.以下说法:①“画线段”是命题;②定理是真命题;③原命题是真命题,则逆命题是假命题;④要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可,以上说法正确的个数为()A.1个 B.2个 C.3个 D.4个7.观察一组等式:,,,,,,……根据这个规律,则的末位数字是()A.0 B.2 C.4 D.68.在△ABC中,∠BAC=90°,AB=3,点M为边BC上的点,连结AM(如图所示),如果将△ABM沿直线AM折叠后,点B恰好落在边AC的中点M处,那么点M到边AC的距离是()A.2 B.2.5 C.3 D.4二、填空题9.计算_______.10.命题“互补的两个角不能都是锐角”是__________命题(填“真”或“假”).11.如图,五边形中,,则的度数是______.12.因式分解:__________.13.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值范围为_______.14.如图,是的角平分线,点是上一点,于点,点是射线上的一个动点,若,则的最小值为______.15.三角形的三边长为3、7、x,则x的取值范围是______16.如图,在ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设ABC,ADF,BEF的面积分别为,,,且,则﹣=_____.17.计算(1)(-2a2)3+2a2·a4-a8÷a2(2)18.将下列各式因式分解(1)xy-4xy(2)x-8xy+16y19.解方程组(1);(2).20.解不等式组,并在数轴上表示出不等式组的解集.三、解答题21.如图,已知AF分别与BD、CE交于点G、H,∠1=50°,∠2=130°.(1)求证:BD∥CE;(2)若∠A=∠F,探索∠C与∠D的数量关系,并证明你的结论.22.某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况.销售日期销售数量(盏)销售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?23.已知关于x,y的方程组(1)请直接写出方程x+2y-6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值时,方程x-2y+mx+5=0总有一个固定的解,求出这个解.(4)若方程组的解中x恰为整数,m也为整数,求m的值.24.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.①若,,则_____;若,则_____;②试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.【参考答案】一、选择题1.C解析:C【分析】利用同底数幂的除法运算法则判断A,利用单项式除以单项式的计算法则判断B,利用完全平方公式判断C,利用积的乘方运算法则判断D.【详解】解:A、a6÷a2=a4,正确,故此选项不符合题意;B、3a2b÷b=3a2,正确,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,故此选项符合题意;D、(-2a2)3=-8a6,正确,故此选项不符合题意;故选:C.【点睛】本题考查同底数幂的除法am÷an=am-n,幂的乘方(am)n=amn,完全平方公式(a+b)2=a2+2ab+b2,掌握运算法则是解题关键.2.C解析:C【分析】根据内错角定义进行解答即可.【详解】解:A、∠1与∠2是同位角,故此选项不合题意;B、∠1与∠2是同旁内角,故此选项不合题意;C、∠1与∠2是内错角,故此选项符合题意;D、∠1与∠2不是内错角,此选项不合题意;故选:C.【点睛】此题主要考查了内错角,关键是掌握内错角的边构成“Z“形.3.A解析:A【分析】求出方程的解x=-3m,根据已知得出-3m≥0,求出即可.【详解】解:2x+3m=x,移项得:x=-3m,∵方程的解是非负数,∴-3m≥0,∴m≤0,故选:A.【点睛】本题考查了解一元一次方程和解一元一次不等式的应用,关键是能根据题意得出不等式-3m≥0,题型较好,难度适中.4.A解析:A【详解】【分析】本题考查的是不等式的基本性质,在不等式的两边同时乘以同一个正数,不等号的方向不变.解:a>b3a>3b故选A5.A解析:A【分析】先用字母a、b表示出不等式组的解集,然后根据已知不等式组的解集对应得到关于a、b的相等关系,求出a、b的值,代入代数式中求解即可.【详解】由解得:,∵不等式的解集为,∴a+2=﹣1,,解得:a=﹣3,b=2,∴,故选:A.【点睛】本题考查了解一元一次不等式组、解一元一次方程、求代数式的值,会利用不等式组的解集得出对应的相等关系是解答本题的关键.6.B解析:B【分析】根据命题的定义对①解析判断;根据定理的定义对②解析判断;根据原命题与逆命题的真假没有联系可对③解析判断;根据判断假命题的方法对④解析判断.【详解】解:“画线段”不是命题,所以①错误;定理是真命题,所以②正确;原命题是真命题,则逆命题不一定是假命题,所以③错误;要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可,所以④正确.故选:.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.B解析:B【分析】根据21=2,22=4,23=8,24=16,25=32,26=64,…,可以得到21,21+22,21+22+23,21+22+23+24,21+22+23+24+25的末位数字,从而可以末位数字的变化特点,得到21+22+23+24+…+22021的末位数字.【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,…,∴21的末位数字是2,21+22的末位数字是6,21+22+23的末位数字是4,21+22+23+24的末位数字是0,21+22+23+24+25的末位数字是2,…,∵2021÷4=505…1,∴21+22+23+24+…+22021的末位数字是2,故选B.【点睛】本题主要考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现所求式子的末位数字变化特点,求出所求式子的末位数字.8.A解析:A【详解】试题分析:由题意设,MD垂直AC于D,因为△ABM折叠后是,所以则有,因为,所以,故到AC的距离是2,故选A考点:点到直线距离点评:本题属于对点到直线距离的基本解题方法的运用二、填空题9.【分析】直接利用幂的乘方和积的乘方运算法则以及单项式乘法运算法则计算得出答案.【详解】解:==故答案为:.【点睛】此题主要考查了幂的乘方和积的乘方,单项式乘法,正确掌握相关运算法则是解题关键.10.真【解析】【分析】利用互补的定义和锐角的定义进行判断后即可得到正确的答案.【详解】解:根据锐角和互补的定义得出,互补的两个角不能都是锐角,此命题是真命题,故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是了解互补的定义及锐角的定义,难度不大.11.【分析】根据补角的性质,得;再根据多边形外角和的性质计算,即可得到答案.【详解】如图,延长,∴故答案为:.【点睛】本题考查了多边形的知识;解题的关键是熟练掌握补角、多边形外角和的性质,从而完成求解.12.【分析】前三项一组,最后一项为一组,利用分组分解法分解因式即可.【详解】a2+b2﹣2ab﹣1=(a2+b2﹣2ab)﹣1=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1).故答案为:(a﹣b+1)(a﹣b﹣1).【点睛】本题考查了分组分解法分解因式,分组后两组之间可以继续进行因式分解是解题的关键.13.a<4【分析】原方程组两式相加可得的值,根据满足x+y<2列式求解即可.【详解】解:,①+②得,x+y=1+,∵x+y<2,∴1+<2,解得a<4.故答案为:a<4.【点睛】本题考查了解二元一次方程以及一元一次不等式,根据题意得出x+y=1+是解本题的关键.14.A解析:6【分析】根据垂线段最短可得PN⊥OA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,从而得解.【详解】当PN⊥OA时,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵PM=6,∴PN的最小值为6.故答案为:6.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.15.4<x<10【分析】根据三角形的三边关系直接进行求解即可.【详解】解:由三角形的三边长为3、7、x,则有:,即;故答案为.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关解析:4<x<10【分析】根据三角形的三边关系直接进行求解即可.【详解】解:由三角形的三边长为3、7、x,则有:,即;故答案为.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.16.3【分析】利用三角形面积公式,等高的三角形的面积比等于底边的比,则==12,==9,然后利用=3即可得到答案.【详解】解:∵EC=2BE,∴==×18=12,∵点D是AC的中点,∴==解析:3【分析】利用三角形面积公式,等高的三角形的面积比等于底边的比,则==12,==9,然后利用=3即可得到答案.【详解】解:∵EC=2BE,∴==×18=12,∵点D是AC的中点,∴==×18=9,∴﹣=3,即+S四边形CEFD﹣(﹣S四边形CEFD)=3,∴﹣=3.故答案为:3.【点睛】本题考查了三角形面积:三角形的面积等于底边长与高线乘积的一半,即=×底×高;三角形的中线将三角形分成面积相等的两部分.17.(1)-7a6;(2)2【分析】(1)直接利用幂的乘方、同底数幂的乘法、同底数幂的除法计算可得;(2)直接利用负整数指数幂的性质、零指数幂、去绝对值符号求解即可.【详解】(1)解:原式=-解析:(1)-7a6;(2)2【分析】(1)直接利用幂的乘方、同底数幂的乘法、同底数幂的除法计算可得;(2)直接利用负整数指数幂的性质、零指数幂、去绝对值符号求解即可.【详解】(1)解:原式=-8a6+2a6-a6=-7a6(2)解:原式=2【点睛】本题考查了幂的乘法、同底数幂的乘法、同底数幂的除法、负整数指数幂的性质、零指数幂、去绝对值符号,解题的关键是:掌握相关的运算法则.18.(1);(2).【分析】(1)提出公因式即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1);(2).【点睛】本题主要考查因式分解,因式分解的步骤解析:(1);(2).【分析】(1)提出公因式即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1);(2).【点睛】本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.19.(1);(2).【分析】(1)利用代入消元法解题;(2)先去分母,去括号,将原二元一次方程组化简,再利用加减消元法解题.【详解】解:(1)由①得,③,把③代入②得,把代入③得,解析:(1);(2).【分析】(1)利用代入消元法解题;(2)先去分母,去括号,将原二元一次方程组化简,再利用加减消元法解题.【详解】解:(1)由①得,③,把③代入②得,把代入③得,;(2)由①得,③由②得,即④③④得把代入③得.【点睛】本题考查二元一次方程组的解法,是重要考点,掌握相关知识是解题关键.20..在数轴上表示见解析【分析】分别解不等式组中的两个不等式,再把两个不等式的解集在数轴上表示出来,确定解集的公共部分,从而可得答案.【详解】解:由①得:由②得:在数轴上分别表示①解析:.在数轴上表示见解析【分析】分别解不等式组中的两个不等式,再把两个不等式的解集在数轴上表示出来,确定解集的公共部分,从而可得答案.【详解】解:由①得:由②得:在数轴上分别表示①②的解集如下:所以不等式组的解集为:【点睛】本题考查的是解不等式组,在数轴上表示不等式组的解集,掌握解不等式组的方法与步骤是解题的关键.三、解答题21.(1)见解析;(2)∠C=∠D,理由见解析.【分析】(1)根据对顶角相等可得∠DGH=∠1,再根据同旁内角互补、两直线平行即可证明;(2)先根据BD//CE可得∠C=∠ABG,再由∠A=∠F得解析:(1)见解析;(2)∠C=∠D,理由见解析.【分析】(1)根据对顶角相等可得∠DGH=∠1,再根据同旁内角互补、两直线平行即可证明;(2)先根据BD//CE可得∠C=∠ABG,再由∠A=∠F得出AC//DF可得∠D=∠ABG,最后等量代换即可解答.【详解】(1)证明:∵∠DGH=∠1=50°,∠2=130°∴∠DGH+∠2=180°∴BD//CE;(2)∠C=∠D,理由如下:∵BD//CE∴∠C=∠ABG∵∠A=∠F∴AC//DF∴∠D=∠ABG∴∠C=∠D.【点睛】本题考查的是平行线的判定与性质,灵活运用平行线的性质定理和判定定理是解答本题的关键.22.(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关解析:(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,根据总价=单价×数量结合总费用不超过4900元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,依题意,得:,解得:.答:A品牌护眼灯的销售价为210元/盏,B品牌护眼灯的销售价为260元/盏.(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B品牌的护眼灯最多采购10盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.销售日期销售数量(盏)销售收入(元)A品牌B品牌第一天21680第二天34167023.(1),(2)m=(3)(4)【分析】(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+解析:(1),(2)m=(3)(4)【分析】(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;(4)先把m当做已知求出x、y的值,然后再根据整数解进行判断即可.【详解】(1)(2)解得把代入,解得m=(3)(4)①+②得:解得,∵x恰为整数,m也为整数,∴2+m=1或2+m=-1,解得24.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性质可得∠AFD=∠FDM+∠FMD=90°-∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.25.【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上半年龙泉市公开选调公务员及选聘事业单位工作人员14考前自测高频考点模拟试题附答案详解(突破训练)
- 2025湖南长沙市财盛国际贸易有限公司招聘2人考前自测高频考点模拟试题及1套参考答案详解
- 2025江西吉安市吉水县吉瑞招商运营有限公司招聘1人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025年度郑州警察学院招聘人才(第二批)15名模拟试卷及答案详解参考
- 2025北京海淀第十九中学教师招聘考前自测高频考点模拟试题及答案详解(新)
- 2025晋能控股集团有限公司招聘高校毕业生模拟试卷含答案详解
- 2025第十三届贵州人才博览会贵州水利水电职业技术学院引进人才12人模拟试卷有完整答案详解
- 2025年福建省宁德市营商环境观察员招募3人模拟试卷附答案详解(模拟题)
- 2025年4月贵州遵义市习水县招聘城镇公益性岗位人员19人模拟试卷及答案详解(考点梳理)
- 2025届春季中国广核集团校园招聘考前自测高频考点模拟试题完整答案详解
- 2025年注册安全工程师考试 安全生产法律法规与标准冲刺押题卷
- 2025年华为软件开发工程师招聘面试题库及答案解析
- 2025年建设工程质量检测行业现状分析及未来五年运行态势
- 鲁科版(五四学制)(2024)六年级上册生物知识点背诵提纲
- 2025张掖市民乐县辅警考试试卷真题
- 2025年中国玻璃生产线数据监测研究报告
- 矿山尾矿购销合同协议
- 学院实验教学中心建设与发展
- 银行解冻申请书
- 铺面装修购销合同模板
- DB35∕T 2174-2024 改良酸性土壤专用有机肥料通 用技术要求
评论
0/150
提交评论