




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市颍州区2026届数学九年级第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,点在边上,且,,过点作,交边于点,将沿着折叠,得,与边分别交于点.若的面积为,则四边形的面积是()A. B. C. D.2.下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.2a6÷a3=2a3 D.a2•a4=a83.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.4.反比例函数的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A. B. C. D.5.已知反比例函数图象如图所示,下列说法正确的是()A.B.随的增大而减小C.若矩形面积为2,则D.若图象上两个点的坐标分别是,,则6.下列事件是必然事件的是()A.半径为2的圆的周长是2 B.三角形的外角和等于360°C.男生的身高一定比女生高 D.同旁内角互补7.如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式<0的解集为x<﹣3或0<x<3;④若双曲线y=(k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数()A.4个 B.3个 C.2个 D.1个8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个 B.2个 C.3个 D.4个9.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是()A.n B.n-1C.4n D.4(n-1)10.已知二次函数的图象如图所示,则下列结论正确的是()A. B. C. D.的符号不能确定二、填空题(每小题3分,共24分)11.如图所示,小明在探究活动“测旗杆高度”中,发现旗杆的影子恰好落在地面和教室的墙壁上,测得,,而且此时测得高的杆的影子长,则旗杆的高度约为__________.12.已知函数的图象如图所示,若矩形的面积为,则__________.13.如图,已知圆锥的底面半径为3,高为4,则该圆锥的侧面积为______.14.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.15.如图,在正方形ABCD中,点E在BC边上,且BC=3BE,AF平分∠DAE,交DC于点F,若AB=3,则点F到AE的距离为___________.16.现有6张正面分别标有数字的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根的概率为____.17.若正多边形的每一个内角为,则这个正多边形的边数是__________.18.已知是方程的根,则代数式的值为__________.三、解答题(共66分)19.(10分)如图①,在中,,是边上任意一点(点与点,不重合),以为一直角边作,,连接,.若和是等腰直角三角形.(1)猜想线段,之间的数量关系及所在直线的位置关系,直接写出结论;(2)现将图①中的绕着点顺时针旋转,得到图②,请判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.20.(6分)如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.21.(6分)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.(1)求证:∠FGC=∠AGD;(2)若AD=1.①当AC⊥DG,CG=2时,求sin∠ADG;②当四边形ADCG面积最大时,求CF的长.22.(8分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.23.(8分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;①当的面积最大时,求点的坐标;②在①的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.24.(8分)如图,直线与双曲线相交于点A,且,将直线向左平移一个单位后与双曲线相交于点B,与x轴、y轴分别交于C、D两点.(1)求直线的解析式及k的值;(2)连结、,求的面积.25.(10分)已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x轴的交点坐标;(2)当y>0时,直接写出自变量x的取值范围.26.(10分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出S△ADE=,由平行线的性质可得,可得S△FGM=2,再利用S四边形DEGF=S△DEM-S△FGM,即可得到答案.【详解】解:如图,连接AM,交DE于点H,交BC于点P,
∵DE∥BC,
∴,∴∵的面积为∴S△ADE=×32=设AH=5a,HP=3a
∵沿着折叠
∴AH=HM=5a,S△ADE=S△DEM=
∴PM=2a,
∵DE∥BC
∴
∴S△FGM=2∴S四边形DEGF=S△DEM-S△FGM=-2=
故选:B.本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键.2、C【分析】分别对选项的式子进行运算得到:2a+5b不能合并同类项,(﹣ab)2=a2b2,a2•a4=a6即可求解.【详解】解:2a+5b不能合并同类项,故A不正确;(﹣ab)2=a2b2,故B不正确;2a6÷a3=2a3,正确a2•a4=a6,故D不正确;故选:C.本题考查了幂的运算,解题的关键是掌握幂的运算法则.3、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.4、C【分析】根据反比例函数的性质直接判断即可得出答案.【详解】∵反比例函数y=中,当x>0时,y随x的增大而减小,
∴k-1>0,
解得k>1.
故选C.本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.5、D【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:A.反比例函数的图象位于第二象限,∴k﹤0故A错误;
B.在第二象限内随的增大而增大,故B错误;
C.矩形面积为2,∵k﹤0,∴k=-2,故C错误;
D.∵图象上两个点的坐标分别是,,在第二象限内随的增大而增大,∴,故D正确,
故选D.本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.6、B【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件),可判断出正确答案.【详解】解:A、半径为2的圆的周长是4,不是必然事件;B、三角形的外角和等于360°,是必然事件;C、男生的身高一定比女生高,不是必然事件;D、同旁内角互补,不是必然事件;故选B.本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、A【分析】①由A点横坐标为3,代入正比例函数,可求得点A的坐标,继而求得k值;
②根据直线和双曲线的性质即可判断;
③结合图象,即可求得关于x的不等式<0的解集;
④过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由点C的纵坐标为6,可求得点C的坐标,继而求得答案.【详解】①∵直线y=x与双曲线y=(k>0)交于A、B两点,A点的横坐标为3,∴点A的纵坐标为:y=×3=2,∴点A(3,2),∴k=3×2=6,故①正确;②∵直线y=x与双曲线y=(k>0)是中心对称图形,∴A点与B点关于原点O中心对称,故②正确;③∵直线y=x与双曲线y=(k>0)交于A、B两点,∴B(﹣3,﹣2),∴关于x的不等式<0的解集为:x<﹣3或0<x<3,故③正确;④过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵点C的纵坐标为6,∴把y=6代入y=得:x=1,∴点C(1,6),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+6)×(3﹣1)=8,故④正确;故选:A.此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想的应用.8、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【详解】解:∵C为的中点,即,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为中点,故E不一定是中点,选项④错误,则结论成立的是①②③,故选:C.此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.9、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和.【详解】解:如图示,由分别过点A1、A2、A3,垂直于两边的垂线,由图形的割补可知:一个阴影部分面积等于正方形面积的,即阴影部分的面积是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故选:B.此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.10、A【分析】由题意根据二次函数的图象与性质即可求出答案判断选项.【详解】解:由图象可知开口向上a>0,与y轴交点在上半轴c>0,∴ac>0,故选A.本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.二、填空题(每小题3分,共24分)11、1【分析】作BE⊥AC于E,可得矩形CDBE,利用同一时刻物高与影长的比一定得到AE的长度,加上CE的长度即为旗杆的高度【详解】解:作BE⊥AC于E,∵BD⊥CD于D,AC⊥CD于C,∴四边形CDBE为矩形,∴BE=CD=1m,CE=BD=2m,∵同一时刻物高与影长所组成的三角形相似,∴,即,解得AE=2(m),∴AC=AE+EC=2+2=1(m).故答案为:1.本题考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.12、-6【分析】根据题意设AC=a,AB=b解析式为y=A点的横坐标为-a,纵坐标为b,因为AB*AC=6,k=xy=-AB*AC=-6【详解】解:由题意得设AC=a,AB=b解析式为y=∴AB*AC=ab=6A(-a,b)b=∴k=-ab=-6此题主要考查了反比例函数与几何图形的结合,注意A点的横坐标的符号.13、【分析】根据圆锥的底面半径为3,高为4可得圆锥的母线长,根据圆锥的侧面积S=即可得答案.【详解】∵圆锥的底面半径为3,高为4,∴圆锥的母线长为=5,∴该圆锥的侧面积为:π×3×5=15π,故答案为:15π本题考查求圆锥的侧面积,如果圆锥的底面半径为r,母线长为l,则圆锥的侧面积S=;熟练掌握圆锥的侧面积公式是解题关键.14、﹣1或1【解析】试题分析:根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.∵关于x的一元二次方程x1+1ax+a+1=0有两个相等的实数根,∴△=0,即4a1﹣4(a+1)=0,解得a=﹣1或1.考点:根的判别式.15、【分析】延长AE交DC延长线于M,关键相似求出CM的长,求出AM长,根据角平分线性质得出比例式,代入求出即可.【详解】延长AE交DC延长线于M,
∵四边形ABCD是正方形,BC=3BE,BC=3,
∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,
∴△ABE∽△MCE,
∴,
∴CM=2AB=6,
即DM=3+6=9,
由勾股定理得:,
∵AF平分∠DAE,
∴,
∴,
解得:,
∵AF平分∠DAE,∠D=90°,
∴点F到AE的距离=,
故答案为:.本题考查了角平分线性质,勾股定理,相似三角形的性质和判定,正方形的性质等知识点,能正确作出辅助线是解此题的关键.16、【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,
∴4-4(a-2)≥0,
∴a≤1,
∴a=-1,0,1,2,1.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:.考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.17、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.18、1【分析】把代入已知方程,并求得,然后将其整体代入所求的代数式进行求值即可.【详解】解:把代入,得,解得,所以.故答案是:1.本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.三、解答题(共66分)19、(1)BE=AD,BE⊥AD;(2)BE=AD,BE⊥AD仍然成立,理由见解析【分析】(1)由CA=CB,CE=CD,∠ACB=90°易证△BCE≌△ACD,所以BE=AD,∠BEC=∠ADC,又因为∠EBC+∠BEC=90°,所以∠EBC+∠ADC=90°,即BE⊥AD;
(2)成立.设BE与AC的交点为点F,BE与AD的交点为点G,易证△ACD≌△BCE.得到AD=BE,∠CAD=∠CBE.再根据等量代换得到∠AFG+∠CAD=90°.即BE⊥AD.【详解】(1)BE=AD,BE⊥AD;在△BCE和△ACD中,∵,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,∴BE⊥AD.故答案为:BE=AD,BE⊥AD.(2)BE=AD,BE⊥AD仍然成立设BE与AC的交点为F,BE与AD的交点为G,如图∴,∴.在和中,∵∴.∴∵,∴,,∴BE⊥AD本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握性质定理是解题的关键.20、(1)见解析,(2,﹣3);(2)见解析,1.1.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而结合三角形面积求法得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求;点B1的坐标为:(2,﹣3);(2)如图所示:△A2B2C2,即为所求;点C2的坐标为:(﹣2,﹣3);△A2B2C2的面积为:4﹣×1×1﹣×1×2﹣×1×2=1.1..此题主要考查了平移变换以及位似变换,正确得出对应点位置是解题关键.21、(1)证明见解析;(2)①sin∠ADG=;②CF=1.【分析】(1)由垂径定理可得CE=DE,CD⊥AB,由等腰三角形的性质和圆内接四边形的性质可得∠FGC=∠ADC=∠ACD=∠AGD;(2)①如图,设AC与GD交于点M,证△GMC∽△AMD,设CM=x,则DM=3x,在Rt△AMD中,通过勾股定理求出x的值,即可求出AM的长,可求出sin∠ADG的值;②S四边形ADCG=S△ADC+S△ACG,因为点G是上一动点,所以当点G在的中点时,△ACG的的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,分别证∠GAC=∠GCA,∠F=∠GCA,推出∠F=∠GAC,即可得出FC=AC=1.【详解】证明:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,CD⊥AB,∴AC=AD,∴∠ADC=∠ACD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∵∠AGD=∠ACD,∴∠FGC=∠ADC=∠ACD=∠AGD,∴∠FGC=∠AGD;(2)①如图,设AC与GD交于点M,∵,∴∠GCM=∠ADM,又∵∠GMC=∠AMD,∴△GMC∽△AMD,∴===,设CM=x,则DM=3x,由(1)知,AC=AD,∴AC=1,AM=1﹣x,在Rt△AMD中,AM2+DM2=AD2,∴(1﹣x)2+(3x)2=12,解得,x1=0(舍去),x2=,∴AM=1﹣=,∴sin∠ADG===;②S四边形ADCG=S△ADC+S△ACG,∵点G是上一动点,∴当点G在的中点时,△ACG的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,∴GA=GC,∴∠GAC=∠GCA,∵∠GCD=∠F+∠FGC,由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,∴∠F=∠GCA,∴∠F=∠GAC,∴FC=AC=1.本题考查的是圆的有关性质、垂径定理、解直角三角形等,熟练掌握圆的有关性质并灵活运用是解题的关键.22、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.23、(1);(2)①;存在,或【分析】(1)先求得点的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)作交于点,,,,根据二次函数性质可求得.(3)求出,再根据直线与直线的夹角是的两倍,得出线段的关系,用两点间距离公式求出坐标.【详解】解:如图(1),;(2)作交于点.①设,,则:则时,最大,;(2),则,设,①若:则,∴;②若则,,作于,,与重合,关于对称,∴本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,三角形面积的巧妙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60335-2-13:2021/AMD1:2025 EN-FR Amendment 1 - Household and similar electrical appliances - Safety - Part 2-13: Particular requirements for deep fat fryers,frying pans
- 甘肃高考美术培训知识点课件
- 瓷砖胶产品知识培训课件
- 县城郊区果园承包协议8篇
- 集团企业数字化转型、数字驾驶舱、数字化平台方案
- 爱自然课件教学课件
- 诗歌手套课件
- 诗歌写作课件
- 26开国大典课件
- 2025年4月养老护理员题库(含答案)
- 2025贵州黔西南州民政局公益性岗位招聘模拟试卷及答案详解(典优)
- DHCP课件讲述教学课件
- 一国两制课件
- 2025广西物资学校公开招聘非实名编工作人员2人笔试备考试题及答案解析
- 隔震支座安装施工方案
- 中药生物安全培训内容课件
- 2024年武汉商学院公开招聘辅导员笔试题含答案
- 捶草印花课件
- vin码打印管理办法
- 安全生产考核巡查办法全文
- 99S203 消防水泵接合器安装图集
评论
0/150
提交评论