




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江杭州经济开发区六校联考数学九上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,MN所在的直线垂直平分线段AB,利用这样的工具,可以找到圆形工件的圆心,如果使用此工具找到圆心,最少使用次数为().A.1 B.2 C.3 D.42.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B.1 C. D.3.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2 B.3a2 C.4a2 D.5a24.如图,在矩形ABCD中,AB=12,P是AB上一点,将△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,则下列结论,其中正确的结论有()①BP=BF;②若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE•EF=1.A.2个 B.3个 C.4个 D.5个5.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A. B. C. D.6.下列四对图形中,是相似图形的是()A.任意两个三角形 B.任意两个等腰三角形C.任意两个直角三角形 D.任意两个等边三角形7.下列图形中是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个8.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()A.100° B.130°C.50° D.65°9.如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为,②OD∥BE,③PB=,④tan∠CEP=其中正确结论有()A.1个 B.2个 C.3个 D.4个10.在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,从布袋中任意摸出一个球是白球的概率()A. B.C. D.二、填空题(每小题3分,共24分)11.,两点都在二次函数的图像上,则的大小关系是____________.12.如图,在四边形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,过A,B,D三点的⊙O分别交BC,CD于点E,M,下列结论:①DM=CM;②弧AB=弧EM;③⊙O的直径为2;④AE=AD.其中正确的结论有______(填序号).13.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.14.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是______.15.已知,则_____.16.如果,那么=.17.在半径为的圆中,的圆心角所对的弧长是__________.18.某种植基地2016年蔬菜产量为100吨,2018年蔬菜实际产量为121吨,则蔬菜产量的年平均增长率为____.三、解答题(共66分)19.(10分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.20.(6分)如图,C地在B地的正东方向,因有大山阻隔,由B地到C地需绕行A地,已知A地位于B地北偏东53°方向,距离B地516千米,C地位于A地南偏东45°方向.现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B地前往C地的路程.(结果精确到1千米)(参考数据:sin53°=,cos53°=,tan53°=)21.(6分)甲、乙、丙三位同学在知识竞赛问答环节中,采用抽签的方式决定出场顺序.求甲比乙先出场的概率.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.23.(8分)计算:|tan30°-l|+2sin60o-tan45°.24.(8分)如图,在与中,,且.求证:.25.(10分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)26.(10分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据垂径定理可知,MN所在直线是直径的位置,而两条直径的交点即为圆心,故最少使用2次就可以找到圆形工件的圆心.【详解】根据垂径定理可知,MN所在直线是直径的位置,而两条直径的交点即为圆心,如图所示,使用2次即可找到圆心O,故选B.本题考查利用垂径定理确定圆心,熟练掌握弦的垂直平分线经过圆心是解题的关键.2、B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.3、A【分析】正多边形和圆,等腰直角三角形的性质,正方形的性质.图案中间的阴影部分是正方形,面积是,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为的正方形的一半,它的面积用对角线积的一半【详解】解:.故选A.4、C【分析】①根据折叠的性质∠PGC=∠PBC=90°,∠BPC=∠GPC,从而证明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性质得出AE=DE,即可利用条件证明△ABE≌△DCE;③先根据题意证明△ABE∽△DEC,再利用对应边成比例求出DE即可;④根据勾股定理和折叠的性质得出△ECF∽△GCP,再利用对应边成比例求出BP,即可算出sin值;⑤连接FG,先证明▱BPGF是菱形,再根据菱形的性质得出△GEF∽△EAB,再利用对应边成比例求出BE·EF.【详解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE=,BE=,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1;故⑤正确,所以本题正确的有①②③⑤,4个,故选:C.本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例.5、B【解析】试题解析:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB=.故选B.6、D【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,对题中条件一一分析,排除错误答案.【详解】解:A、任意两个三角形,形状不确定,不一定是相似图形,故A错误;B、任意两个等腰三角形,形状不确定,不一定是相似图形,故B错误;C、任意两个直角三角形,直角边的长度不确定,不一定是相似图形,故C错误;D、任意两个等边三角形,形状相同,但大小不一定相同,符合相似形的定义,故D正确;故选:D.本题考查的是相似形的识别,关键要联系实际,根据相似图形的定义得出.7、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】从左起第2、4个图形是中心对称图形,故选B.本题考查了中心对称图形的概念,注意掌握图形绕某一点旋转180°后能够与自身重合.8、B【分析】根据三角形的内切圆得出∠OBC=∠ABC,∠OCB=∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=∠ABC,∠OCB=∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.9、C【解析】试题解析:作DK⊥BC于K,连接OE.∵AD、BC是切线,∴∠DAB=∠ABK=∠DKB=90°,∴四边形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切线,∴DA=DE,CE=CB=9,在RT△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,∴DK==12,∴AB=DK=12,∴⊙O半径为1.故①错误,∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正确.在RT△OBC中,PB===,故③正确,∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④正确,∴②③④正确,故选C.10、C【分析】根据概率公式,求摸到白球的概率,即用白球除以小球总个数即可得出得到黑球的概率.【详解】∵在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,∴从布袋中任意摸出一个球是白球的概率为:.故选:C.此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.二、填空题(每小题3分,共24分)11、>【分析】根据二次函数的性质,可以判断y1,y2的大小关系,本题得以解决.【详解】∵二次函数,∴当x<0时,y随x的增大而增大,∵点在二次函数的图象上,∵-1>-2,∴>,故答案为:>.本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.12、①②④【分析】连接BD,BM,AM,EM,DE,根据圆周角定理的推论可判定四边形ADMB是矩形,进一步可判断①;在①的基础上可判定四边形AMCB是平行四边形,进而得BE∥AM,即可判断②;易证∠AEM=∠ADM=90º,DM=EM,再利用角的关系可得∠ADE=∠AED,继而可判断④;由题设条件求不出⊙O的直径,故可判断③.【详解】解:连接BD,BM,AM,EM,DE,∵∠BAD=90°,∴BD为圆的直径,∴∠BMD=90°,∴∠BAD=∠CDA=∠BMD=90°,∴四边形ADMB是矩形,∴AB=DM=1,又∵CD=2,∴CM=1,∴DM=CM,故①正确;∵AB∥MC,AB=MC,∴四边形AMCB是平行四边形,∴BE∥AM,∴,故②正确;∵,∴AB=EM=1,∴DM=EM,∴∠DEM=∠EDM,∵∠ADM=90º,∴AM是直径,∴∠AEM=∠ADM=90º,∴∠ADE=∠AED,∴AD=AE,故④正确;由题设条件求不出⊙O的直径,所以③错误;故答案为:①②④.本题是圆的综合题,主要考查了圆周角定理及其推论、圆心角、弦及弧之间的关系、等腰三角形的判定、矩形的判定与性质以及平行四边形的判定与性质等知识,熟练掌握有关性质及定理是解本题的关键.13、(1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用14、1【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【详解】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×11=8,在Rt△OCB中,由勾股定理得:OC===1,故答案为:1.此题考查勾股定理,垂径定理的应用,由垂径定理求出BC是解题的关键.15、【分析】由已知可得x、y的关系,然后代入所求式子计算即可.【详解】解:∵,∴,∴.故答案为:.本题考查了比例的性质和代数式求值,属于基本题型,掌握求解的方法是关键.16、【解析】试题分析:本题主要考查的就是比的基本性质.根据题意可得:=+=+1=+1=.17、【分析】根据弧长公式:即可求出结论.【详解】解:由题意可得:弧长=故答案为:.此题考查的是求弧长,掌握弧长公式是解决此题的关键.18、10%【分析】2016年到2018年是2年的时间,设年增长率为x,可列式100×=121,解出x即可.【详解】设平均年增长率为x,可列方程100×=121解得x=10%故本题答案应填10%.本题考查了一元二次函数的应用问题.三、解答题(共66分)19、(1)必然,不可能;(2);(3)此游戏不公平.【解析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;则选择乙的概率为:,故此游戏不公平.此题主要考查了游戏公平性,正确列出树状图是解题关键.20、建成高铁后从B地前往C地的路程约为722千米.【分析】作AD⊥BC于D,分别根据正弦、余弦的定义求出BD、AD,再根据等腰直角三角形的性质求出CD的长,最后计算即可.【详解】解:如图:作AD⊥BC于D,在Rt△ADB中,cos∠DAB=,sin∠DAB=,∴AD=AB•cos∠DAB=516×=309.6,BD=AB•sin∠DAB=516×=412.8,在Rt△ADC中,∠DAC=45°,∴CD=AD=309.6,∴BC=BD+CD≈722,答:建成高铁后从B地前往C地的路程约为722千米.本题考查了方向角问题,掌握方向角的概念和熟记锐角三角函数的定义是解答本题的关键.21、【分析】首先根据题意用列举法列出所有等可能的结果与甲比乙先出场的情况,再利用概率公式求解即可求得答案.【详解】解:甲、乙、丙三位同学采用抽签的方式决定出场顺序,所有可能出现的结果有:(甲,乙,丙)、(甲、丙、乙)(乙,甲,丙)、(乙,丙,甲)(丙,甲,乙)、(丙,乙,甲)共有6种,它们出现的可能性相同.所有的结果中,满足“甲比乙先出场”(记为事件)的结果有3中,所以本题考查了列举法求概率,用到的知识点为:概率=所求情况数与总情况数之比.22、(1)图见解析;(2)图见解析;路径长π.【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,然后计算出OB的长后利用弧长公式计算点B旋转到点B2所经过的路径长.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,OB==2点B旋转到点B2所经过的路径长==π.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、【分析】将特殊角的三角函数值代入求解即可.【详解】原式=|-1|+2×-1=1-+-1=.本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.24、见解析【分析】先证得,利用有两条对应边的比相等,且其夹角相等,即可判定两个三角形相似.【详解】∵,∴,即,又,∴.本题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两条对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似,熟记各种判定相似三角形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长治市人民医院超声引导穿刺考核
- 朔州市中医院补体检测临床意义考核
- 2025年中国球型氧化铝项目商业计划书
- 承德市中医院脊柱术后并发症处理考核
- 北京市人民医院骨皮瓣移植技术考核
- 北京市人民医院造血干细胞计数与活力检测考核
- 邯郸市中医院血液检验危急值报告流程考核
- 呼和浩特市中医院科室学术影响力建设考核
- 石家庄市人民医院胃底静脉曲张治疗考核
- 2025妇幼保健院儿童颅内肿瘤手术专项技能考核
- 2025全国翻译专业资格(水平)考试土耳其语八十七级笔译试卷
- 大学生对校园基础设施满意度调查
- 前交叉韧带重建术护理查房
- 中长导管健康宣教
- 档案库房管理暂行办法
- 新版护理分级制度
- 2024年昭通市盐津县公安局警务辅助人员招聘考试真题
- DB64∕T 2131-2025 建筑施工非常规高处吊篮施工规程
- 单梁行车培训
- 客运公司团建活动方案
- 护理安全警示教育案例
评论
0/150
提交评论