广西南宁青秀区四校联考2026届九年级数学第一学期期末经典试题含解析_第1页
广西南宁青秀区四校联考2026届九年级数学第一学期期末经典试题含解析_第2页
广西南宁青秀区四校联考2026届九年级数学第一学期期末经典试题含解析_第3页
广西南宁青秀区四校联考2026届九年级数学第一学期期末经典试题含解析_第4页
广西南宁青秀区四校联考2026届九年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁青秀区四校联考2026届九年级数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.2.,是的两条切线,,为切点,直线交于,两点,交于点,为的直径,下列结论中不正确的是()A. B. C. D.3.下列多边形一定相似的是()A.两个平行四边形 B.两个矩形C.两个菱形 D.两个正方形4.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.5.一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为()A.8 B.10 C.20 D.406.已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为()A. B. C. D.7.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.8.下列函数,当时,随着的增大而减小的是()A. B. C. D.9.如图,一个半径为r(r<1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr2 B.C. D.10.如图,矩形中,,,点为矩形内一动点,且满足,则线段的最小值为()A.5 B.1 C.2 D.311.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A.(,),(,) B.(,),(,)C.(,),(,) D.(,),(,)12.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.化简:-2a2+(a2-b2)=______.14.抛物线的对称轴为__________.15.已知关于的一元二次方程的一个根是2,则的值是:______.16.半径为10cm的半圆围成一个圆锥,则这个圆锥的高是__cm.17.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.18.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=_____.三、解答题(共78分)19.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB绕原点顺时针旋转后得到的△,并写出点的坐标;(2)在(1)的条件下,求线段在旋转过程中扫过的扇形的面积.20.(8分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.21.(8分)如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.22.(10分)有一张长,宽的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为,求纸盒的高.23.(10分)如图,在平面直角坐标系中,抛物线的顶点为,且经过点与轴交于点,连接,,.(1)求抛物线对应的函数表达式;(2)点为该抛物线上点与点之间的一动点.①若,求点的坐标.②如图②,过点作轴的垂线,垂足为,连接并延长,交于点,连接延长交于点.试说明为定值.24.(10分)城市规划期间,欲拆除一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道.试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域.)(≈1.732,≈1.414)25.(12分)如图,在平面直角坐标系中,矩形ABCD的边CD在y轴上,点A在反比例函数的图象上,点B在反比例函数的图象上,AB交x轴与点E,.

(1)求k的值;(2)若,点P为y轴上一动点,当的值最小时,求点P的坐标.26.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1;(1)画出△ABC关于原点O对称的△A1B1C1.

参考答案一、选择题(每题4分,共48分)1、C【解析】∵在平面直角坐标系中,关于原点对称的两个点的横坐标与横坐标、纵坐标与纵坐标都互为相反数,∴点P(1,-2)关于原点的对称点坐标为(-1,2),故选C.2、B【解析】根据切线的性质和切线长定理得到PA=PB,∠APE=∠BPE,,易证△PAE≌△PBE,得到E为AB中点,根据垂径定理得;通过互余的角的运算可得.【详解】解:∵,是的两条切线,∴,∠APE=∠BPE,故A选项正确,在△PAE和△PBE中,,∴△PAE≌△PBE(SAS),∴AE=BE,即E为AB的中点,∴,即,故C选项正确,∴∵为切点,∴,则,∴∠PAE=∠AOP,又∵,∴∠PAE=∠ABP,∴,故D选项正确,故选B.本题主要考查了切线长定理、全等三角形的判定和性质、垂径定理的推论及互余的角的运算,熟练掌握这些知识点的运用是解题的关键.3、D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.4、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.5、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.6、A【分析】根据,求得m=3或−1,根据当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,从而判断m=-1符合题意,然后把x=0代入解析式求得y的值.【详解】解:∵,∴m=3或−1,∵二次函数的对称轴为x=m,且二次函数图象开口向下,又∵当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,∴−1≤m≤0∴m=-1符合题意,∴二次函数为,当x=0时,y=1.故选:A本题考查了二次函数的性质,根据题意确定m=-1是解题的关键.7、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.8、D【分析】根据各个选项中的函数解析式,可以判断出当x>0时,y随x的增大如何变化,从而可以解答本题.【详解】在y=2x+1中,当x>0时,y随x的增大而增大,故选项A不符合题意;在中,当x>0时,y随x的增大而增大,故选项B不符合题意;在中,当x>0时,y随x的增大而增大,故选项C不符合题意;在y=−x2−2x=−(x+1)2+1中,当x>0时,y随x的增大而减小,故选项D符合题意;故选:D.本题考查一次函数的性质、反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,可以判断出当x>0时,y随x的增大如何变化.9、C【分析】当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,根据六边形的性质得出,所以,再由锐角三角函数的定义求出BF的长,最后利用可得出答案.【详解】如图,当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,∵多边形是正六边形,∴,,∴圆形纸片不能接触到的部分的面积是故选:C.本题主要考查正六边形和圆,掌握正六边形的性质和特殊角的三角函数值是解题的关键.10、B【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.11、C【分析】如过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、根据△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解决问题.【详解】解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、∵点A坐标(-2,1),点C纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,,∴点C坐标,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,,∴点B坐标,故选C.本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.12、B【解析】试题分析:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程的两根为、,由对称轴x>0,可知>0,即>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,∴当x=﹣1时,y=a﹣b+c<0,故④正确.故选B.考点:二次函数图象与系数的关系.二、填空题(每题4分,共24分)13、-a2-b2【分析】去括号合并同类项即可.【详解】原式=-2a2+a2-b2=-a2-b2.故答案为:-a2-b2.本题考查了整式的加减,即去括号合并同类项.去括号法则:当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号.14、【分析】根据抛物线的解析式利用二次函数的性质,即可找出抛物线的对称轴,此题得解.【详解】解:∵抛物线的解析式为,

∴抛物线的对称轴为直线x=故答案为:.本题考查二次函数的性质,解题的关键是明确抛物线的对称轴是直线x=.15、1【分析】先将所求式子化成,再根据一元二次方程的根的定义得出一个a、b的等式,然后将其代入求解即可得.【详解】由题意,将代入方程得:整理得:,即将代入得:故答案为:1.本题考查了一元二次方程的根的定义、代数式的化简求值,利用一元二次方程的根的定义得出是解题关键.16、【分析】由半圆的半径可得出圆锥的母线及底面半径的长度,利用勾股定理即可求出圆锥的高.【详解】设底面圆的半径为r.∵半径为10cm的半圆围成一个圆锥,∴圆锥的母线l=10cm,∴,解得:r=5(cm),∴圆锥的高h(cm).故答案为5.本题考查了圆锥的计算,利用勾股定理求出圆锥的高是解题的关键.17、1【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.18、1【分析】利用抛物线与x轴的交点问题得到m2﹣m﹣1=0,则m2﹣m=1,然后利用整体代入的方法计算m2﹣m+5的值.【详解】∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=1.故答案为:1.本题考查了抛物线与x轴的交点:把求二次函数(是常数,)与轴的交点坐标问题转化为解关于的一元二次方程.三、解答题(共78分)19、(1)图见解析,点A1坐标是(1,-4);(2)【分析】(1)据网格结构找出点A、B绕点O按照顺时针旋转90°后的对应点A1、B1的位置,然后顺次O、A1、B1连接即可,再根据平面直角坐标系写出A1点的坐标;(2)利用扇形的面积公式求解即可,利用网格结构可得出.【详解】(1)点A1坐标是(1,-4)(2)根据题意可得出:∴线段在旋转过程中扫过的扇形的面积为:.本题考查的知识点是旋转变换以及扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20、【详解】解:树状图为:

从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个,所以,P(这位考生合格)=答:这位考生合格的概率是.21、周长=32,面积=32.【分析】由在菱形ABCD中,∠ABC=60°,可得△ABC是等边三角形,又由对角线AC=1,即可求得此菱形的边长,进而可求出菱形的周长,再根据菱形的面积等于对角线乘积的的一半即可求出其面积.【详解】∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=1.∴菱形ABCD的周长=4×1=32,∵BO==4,∴BD=2BO=1,∴菱形ABCD的面积=×1×=32.本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.22、纸盒的高为.【分析】设纸盒的高是,根据题意,其底面的长宽分别为(40-2x)和(30-2x),根据长方形面积公式列方程求解即可.【详解】解:设纸盒的高是.依题意,得.整理得.解得,(不合题意,舍去).答:纸盒的高为.本题考查一元二次方程的应用,根据题意用含x的式子表示底面的长和宽,正确列方程,解方程是本题的解题关键.23、(1);(2)①点的坐标为,;②,是定值.【分析】(1)设函数为,把代入即可求解;(2)①先求出直线AB解析式,求出C’点,得到,再求出,设点,过作轴的平行线交于点,得到,根据三角形面积公式得,解出x即可求解;②过作轴的垂线,垂足为点,设,表示出,故,根据,得,故,即,得到.再过作的垂线,垂足为点,根据相似三角形的性质得到,可得的值即为定值.【详解】(1)解:设,把点代入,得,解得,∴该抛物线对应的函数表达式为.(2)①设直线的函数表达式为,把,代入,得,解得.∴直线的函数表达式为.设直线与轴交于点,则点,∴.,.设点,过作轴的平行线交于点,则,∴,,,所以点的坐标为,.②过作轴的垂线,垂足为点,设,则,,由,得,,即,故.过作的垂线,垂足为点,由,得,,即,故.所以,是定值.此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,相似三角形的判定与性质.24、不必封上人行道【分析】过C点作CG⊥AB交AB于G.求需不需要将人行道封上实际上就是比较AB与BE的长短,已知BD,DF的长度,那么AB的长度也就求出来了,现在只需要知道BE的长度即可,有BF的长,ED的长,缺少的是DF的长,根据“背水坡CD的坡度i=1:2,坝高CF为2m”DF是很容易求出的,这样有了CG的长,在△ACG中求出AG的长度,这样就求出AB的长度,有了BE的长,就可以判断出是不是需要封上人行道了.【详解】过C点作CG⊥AB交AB于G.在Rt△CDF中,水坡CD的坡度i=2:1,即tan∠CDF=2,∵CF=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论