




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题1.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).2.问题情境:(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.问题迁移:(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.3.如图1,点在直线、之间,且.(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示).4.如图,直线,一副直角三角板中,.(1)若如图1摆放,当平分时,证明:平分.(2)若如图2摆放时,则(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.5.已知,点为平面内一点,于.(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数.6.(1)(问题)如图1,若,,.求的度数;(2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数.7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把个记作aⓝ,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2③,(﹣)③.(深入思考)2④我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣)⑩.(3)猜想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧8.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①,又,,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,而,则,可得,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写结果:①________.②________.9.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以.(1)计算:和;(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且,猜想:________,并说明你猜想的正确性.10.阅读材料:求值:,解答:设,将等式两边同时乘2得:,将得:,即.请你类比此方法计算:.其中n为正整数11.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而<2于是可用来表示的小数部分.请解答下列问题:(1)的整数部分是_______,小数部分是_________;(2)如果的小数部分为的整数部分为求的值;(3)已知:其中是整数,且求的平方根.12.在已有运算的基础上定义一种新运算:,的运算级别高于加减乘除运算,即的运算顺序要优先于运算,试根据条件回答下列问题.(1)计算:;(2)若,则;(3)在数轴上,数的位置如下图所示,试化简:;(4)如图所示,在数轴上,点分别以1个单位每秒的速度从表示数-1和3的点开始运动,点向正方向运动,点向负方向运动,秒后点分别运动到表示数和的点所在的位置,当时,求的值.13.如图①,在平面直角坐标系中,点,,其中,是16的算术平方根,,线段由线段平移所得,并且点与点A对应,点与点对应.(1)点A的坐标为;点的坐标为;点的坐标为;(2)如图②,是线段上不同于的任意一点,求证:;(3)如图③,若点满足,点是线段OA上一动点(与点、A不重合),连交于点,在点运动的过程中,是否总成立?请说明理由.14.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.(1)若时,则___________;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)15.在平面直角坐标系中,已知长方形,点,.(1)如图,有一动点在第二象限的角平分线上,若,求的度数;(2)若把长方形向上平移,得到长方形.①在运动过程中,求的面积与的面积之间的数量关系;②若,求的面积与的面积之比.16.请阅读求绝对值不等式和的解的过程.对于绝对值不等式,从图1的数轴上看:大于而小于的数的绝对值小于,所以的解为;对于绝对值不等式,从图2的数轴上看:小于或大于的数的绝对值大于,所以的解为或.(1)求绝对值不等式的解(2)已知绝对值不等式的解为,求的值(3)已知关于,的二元一次方程组的解满足,其中是负整数,求的值.17.如图,在下面直角坐标系中,已知,,三点,其中,,满足关系式.(1)求,,的值;(2)如果在第二象限内有一点,请用含的式子表示四边形的面积;(3)在(2)的条件下,是否存在点,使四边形的面积与三角形的面积相等?若存在,求出点的坐标,若不存在,请说明理由.18.在平面直角坐标系中,,满足.(1)直接写出、的值:;;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值.19.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.20.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B2AB,B1C2BC,C1A2CA,根据等高两三角形的面积比等于底之比,所以2S△ABC2a,由此继续推理,从而解决了这个问题.(1)直接写出S1(用含字母a的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值.21.如图,已知和的度数满足方程组,且.(1)分别求和的度数;(2)请判断与的位置关系,并说明理由;(3)求的度数.22.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.(3)若AM=BN,MN=BM,求m和n值.23.在平面直角坐标系中,点、在坐标轴上,其中、满足.(1)求、两点的坐标;(2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标;(3)平移线段到,若点、也在坐标轴上,如图2所示.为线段上的一动点(不与、重合),连接、平分,.求证:.24.在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点.(1)若,求C点的坐标;(2)若,连接,过点B作的垂线l①判断直线l与x轴的位置关系,并说明理由;②已知E是直线l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数、负数还是0?并说明理由.25.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒.(1)当时,平方厘米;当时,平方厘米;(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围;(3)若的面积为平方厘米,直接写出值.26.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒?27.对于三个数,,,表示,,这三个数的平均数,表示,,这三个数中最小的数,如:,;,.解决下列问题:(1)填空:______;(2)若,求的取值范围;(3)①若,那么______;②根据①,你发现结论“若,那么______”(填,,大小关系);③运用②解决问题:若,求的值.28.定义:如果一个两位数a的十位数字为m,个位数字为n,且、、,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为.例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以.根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________;②计算:________;________;(m、n分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c;(3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值________;(4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围________.29.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作.例如,,,,那么,,其中.例如,,,.请你解决下列问题:(1)__________,__________;(2)如果,那么x的取值范围是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.30.如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动.(1)点的坐标为___________;当点移动5秒时,点的坐标为___________;(2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间;(3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①E(3,﹣2)②见解析;③,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.2.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.【详解】解:(1)过作,,,,,,,,;(2),理由如下:如图3,过作交于,,,,,,,又;(3)①当在延长线时(点不与点重合),;理由:如图4,过作交于,,,,,,,,又,;②当在之间时(点不与点,重合),.理由:如图5,过作交于,,,,,,,,又.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.3.(1)见解析;(2)10°;(3)【分析】(1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HE∥CD,设由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出.【详解】(1)过点E作EF∥CD,如图,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)过点E作HE∥CD,如图,设由(1)得AB∥CD,则AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)过点N作NP∥CD,过点M作QM∥CD,如图,由(1)得AB∥CD,则NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.4.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.5.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答.【详解】(1)证明:∵,∴,∵于,∴,∴,∴;(2)证明:过作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)设∠DBE=a,则∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.6.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.7.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)aⓝ=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.8.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论;②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①,,∴,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,而,∴,可得,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.9.(1);(2)见解析;(3)【分析】(1)根据的定义,可以直接计算得出;(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;(3)根据(2)中的结论,猜想:.【详解】解:(1)已知,所以新的三个数分别是:,这三个新三位数的和为,;同样,所以新的三个数分别是:,这三个新三位数的和为,.(2)设,得到新的三个数分别是:,这三个新三位数的和为,可得到:,即等于x的各数位上的数字之和.(3)设,由(2)的结论可以得到:,,,根据三位数的特点,可知必然有:,,故答案是:.【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同.10.(1);(2).【解析】【分析】设,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;同理即可得到所求式子的值.【详解】解:设,将等式两边同时乘2得:,将下式减去上式得:,即,则;设,两边同时乘3得:,得:,即,则.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.11.(1)4,-4;(2)1;(2)±12.【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵4<<5,∴的整数部分是4,小数部分是-4,故答案为4,-4;(2)∵2<<3,∴a=-2,∵3<<4,∴b=3,∴a+b-=-2+3-=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整数,且0<y<1,∴x=110,y=100+-110=-10,∴x++24-y=110++24-+10=144,x++24-y的平方根是±12.【点睛】本题考查了估算无理数的大小,能估算出、、、的范围是解此题的关键.12.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x、y的取值范围进行化简即可;(4)根据A、B在数轴上的移动方向和速度可分别用代数式表示出数和,再根据(2)的解题思路即可得到结果.【详解】解:(1);(2)依题意得:,化简得:,所以或,解得:x=5或x=1;(3)由数轴可知:0<x<1,y<0,所以===(4)依题意得:数a=−1+t,b=3−t;因为,所以,化简得:,解得:t=3或t=,所以当时,的值为3或.【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.13.(1),,;(2)证明见解析;(3)成立,理由见解析【分析】(1)根据算术平方根、立方根得、;再根据直角坐标系、平移的性质分析,即可得到答案;(2)根据平移的性质,得;根据平行线性质,分别推导得,,从而完成证明;(3)结合题意,根据平行线的性质,推导得、;结合(2)的结论,通过计算即可完成证明.【详解】(1)连接∵是16的算术平方根∴∴∴∵∴∴∴∵线段由线段平移所得,并且点与点A对应,点与点对应∴,∴故答案为:,,;(2)∵线段由线段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的结论得:,∵,∴∴∵∴∴∴在点运动的过程中,总成立.【点睛】本题考查了算术平方根、立方根、平行线、平移、直角坐标系的知识;解题的关键是熟练掌握直角坐标系、平移、平行线的性质,从而完成求解.14.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.15.(1)55°或35°;(2)①;②.【解析】【分析】(1)分两种情况:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根据点在第二象限的角平分线上,得出∠POE=45°,对顶角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知条件,得出∠CEO=45°,又根据∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先设长方形向上平移个单位长,得到长方形,然后列出和的面积,即可得出两者的数量关系;②首先根据已知条件判定四边形是平行四边形,经过等量转化,即可得出和的面积,进而得出其面积之比.【详解】(1)分两种情况:①令PC交x轴于点E,延长CB至x轴,交于点F,如图所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵点在第二象限的角平分线上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延长CB,交直线l于点E,由已知得,,∵点在第二象限的角平分线上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案为55°或35°.(2)如图,①设长方形向上平移个单位长,得到长方形∴②∵长方形,∴∵,令交于E,则四边形是平行四边形,∴∴又∵由①得知,∴∴.【点睛】此题主要考查等量转换和平行四边形的判定以及性质,熟练掌握,即可解题.16.(1)x>5或x<1;(2)9;(3)m=-3或m=-2或m=-1【分析】(1)由绝对值的几何意义即可得出答案;(2)由知,据此得出,再结合可得出关于、的方程组,解之即可求出、的值,从而得出答案;(3)两个方程相加化简得出,由知,据此得出,解之求出的取值范围,继而可得答案.【详解】解:(1)根据绝对值的定义得:或,解得或;(2),,解得,解集为,,解得,则;(3)两个方程相加,得:,,,,,解得,又是负整数,或或.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握绝对值的几何意义及解一元一次不等式和不等式组的能力.17.(1)a=2,b=3,c=4;(2)S四边形ABOP=3-m;(3)存在,P(-3,).【分析】(1)根据非负数的性质,即可解答;(2)四边形ABOP的面积=△APO的面积+△AOB的面积,即可解答;(3)存在,根据面积相等求出m的值,即可解答.【详解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A(0,2),B(3,0),C(3,4),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(-m)=-m,∴S四边形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=×4×3=6,若S四边形ABOP=S△ABC=3-m=6,则m=-3,∴存在点P(-3,)使S四边形ABOP=S△ABC.【点睛】本题考查了坐标与图形性质,解决本题的关键是根据非负数的性质求出a,b,c.18.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)过点作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值;(3)先根据求出点坐标,再根据面积关系求出值即可.【详解】解:(1),,,,,故答案为,2;(2)如图1,过作直线垂直于轴,延长交直线于点,设的坐标为,过作交直线于点,连接,,,,解得,,,又点满足的面积等于6,,解得或;(3)如图2,延长交轴于,过作轴于,过作轴于,,,解得,,,,解得,,,,由题知,当秒时,,,,,,,,解得或2.【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键.19.(1)每头牛3两银子,每头羊2两银子;(2)共有三种购买方法:方案一:购买2头牛,7头羊;方案二:购买4头牛,4头羊;方案三:购买6头牛,1头羊【分析】(1)设每头牛值x两银子,每只羊值y两银子,根据“5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买a头牛,b只羊,利用总价=单价×数量,即可得出关于a,b的二元一次方程,结合a,b均为正整数,即可得出各购买方案.【详解】解:(1)设每头牛x两银子,每头羊y两银子,根据题意,得解得答:每头牛3两银子,每头羊2两银子.(含设)(2)设该商人购买了a头牛,b头羊,根据题意,得∵a、b均为正整数∴该方程的解为或或所以共有三种购买方法:方案一:购买2头牛,7头羊;方案二:购买4头牛,4头羊;方案三:购买6头牛,1头羊.【点睛】本题考查了二元一次方程组的应用、数学常识以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.20.(1)19a;(2)315;(3).【解析】【分析】(1)首先根据题意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,则可求得面积S1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC的面积;(3)设S△BPF=m,S△APE=n,依题意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,从而求解.【详解】解:(1)连接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案为:19a;(2)过点作于点,设,,;,.,即.同理,...①,,.②由①②,得,.(3)设,,如图所示.依题意,得,..,.,,...【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.21.(1);(2),理由详见解析;(3)40°【分析】(1)利用加减消元法,通过解二元一次方程组可求出和的度数;(2)利用求得的和的度数可得到,于是根据平行线的判定可判断AB∥EF,然后利用平行的传递性可得到AB∥CD;(3)先根据垂直的定义得到,再根据平行线的性质计算的度数.【详解】解(1)解方程组,①-②得:,解得:把代入②得:解得:;(2),理由:∵,,,(同旁内角互补,两直线平行),又,;(3),.【点睛】本题考查了平行线的性质与判定、解二元一次方程组,熟练掌握平行线的性质和判定定理是解题关键.22.(1)n-m;(2)①M是AN的中点,n=2m+3;②A是MN中点,n=-m-6;③N是AM的中点,;(3)或或.【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M是A、N的中点,n=2m+3;②当A点在M、N点中点时,n=﹣6﹣m;③N是M、A的中点时,n;(3)由已知可得|m+3|=|n﹣1|,n﹣m|m+3|,分情况求解即可.【详解】(1)MN=n﹣m.故答案为:n﹣m;(2)分三种情况讨论:①M是A、N的中点,∴n+(-3)=2m,∴n=2m+3;②A是M、N点中点时,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中点时,-3+m=2n,∴n;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵MNBM,∴n﹣m|m+3|,∴或或或,∴或或或.∵n>m,∴或或.【点睛】本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.23.(1),两点的坐标分别为,;(2)点的坐标是;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B作y轴的平行线分别与过点A,C作x轴的平行线交于点N,点M,过点C作y轴的平行线与过点A作x轴的平行线交于点T,根据三角形的面积长方形的面积(三角形的面积三角形的面积三角形的面积)列出方程,求解得出点C的坐标,由平移的规律可得点D的坐标;(3)过点作,交轴于点,过点作,交于点,根据两直线平行,内错角相等与已知条件得出,同样可证,由平移的性质与平行公理的推论可得,最后根据,通过等量代换进行证明.【详解】解:(1),又∵,,,,即,解方程组得,,两点的坐标分别为,;(2)如图,过点B作y轴的平行线分别与过点A,C作x轴的平行线交于点N,点M,过点C作y轴的平行线与过点A作x轴的平行线交于点T,∴三角形的面积长方形的面积(三角形的面积三角形的面积三角形的面积),根据题意得,,化简,得,解得,,依题意得,,,即点的坐标为,依题意可知,点的坐标是由点的坐标先向左平移个单位长度,再向下平移个单位长度得到的,从而可知,点的坐标是由点的坐标先向左平移个单位长度,再向下平移个单位长度得到的,∴点的坐标是;(3)证明:过点作,交轴于点,如图所示,则,,,过点作,交于点,如图所示,则,平分,,,由平移得,,,,,,,.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.24.(1)(-1,-2);(2)①结论:直线l⊥x轴.证明见解析;②结论:(s-m)+(t-n)=0.证明见解析【分析】(1)利用非负数的性质求出a,b的值,可得结论.(2)①求出A,D的纵坐标,证明AD∥x轴,可得结论.②判断出D(m+1,n-1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1),又,,,,,点先向右平移2个单位,再向下平移1个单位得到点,.(2)①结论:直线轴.理由:,,,向右平移个单位,再向下平移1个单位得到点,,,的纵坐标相同,轴,直线,直线轴.②结论:.理由:是直线上一点,连接,且的最小值为1,,点,及点都是关于,的二元一次方程的解为坐标的点,,①②得到,,③②得到,,,,.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.25.(1)1;(2)(3)【分析】(1)根据三角形的面积公式即可求解;(2)根据题意列出不等式组故可求解;(3)分Q点在AB上、BC上和CD上分别列出方程即可求解.【详解】(1)当时,=1平方厘米;当时,=平方厘米;故答案为;;(2)解:根据题意,得解得,故的取值范围为;(3)当Q点在AB上时,依题意可得解得;当Q点在BC上时,依题意可得解得>6,不符合题意;当Q点在AB上时,依题意可得或解得或;∴值为.【点睛】此题主要考查不等式组与一元一次方程的应用,解题的关键是根据题意得到方程或不等式组进行求解.26.(1);(2)【分析】(1)根据题意设盒底边长,接口的宽度,分别为,,根据题意列方程组,再根据长宽高求得体积;(2)分别设第一个月和第二个月的销售量为盒,根据题意列出方程和不等式组,根据不等式确定二元一次方程的解,两个月的销售总量为盒【详解】(1)设设盒底边长为,接口的宽度为,则盒高是,根据题意得:解得:茶叶盒的容积是:答:该茶叶盒的容积是(2)设第一个月销售了盒,第二个月销售了盒,根据题意得:化简得:①第一个月只售出不到一半但超过三分之一的量即由①得:解得:是整数,所以为5的倍数或者或者答:这批茶叶共进了或者盒.【点睛】本题考查了二元一次方程组的应用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国多晶硅棒项目商业计划书
- 2025年中国四氢双环戊二烯项目创业计划书
- 中国农用机械涂料项目创业计划书
- 中国空气电池项目创业计划书
- 中国赖氨酸项目创业计划书
- 哈尔滨市人民医院血糖管理考核考核
- 呼和浩特市人民医院起搏器程控与ICD参数调整考核
- 大同市人民医院穿支皮瓣设计与切取考核
- 2025年中国微玻璃纤维棉项目创业计划书
- 包头市人民医院机械清创技术考核
- 宫颈恶性肿瘤的个案护理
- 英式马术课件
- 2025至2030中国猎头行业发展趋势分析与未来投资战略咨询研究报告
- 地产人员培训课件
- 环境工程专业导论课件
- 牙周治疗图讲课件
- 急诊外科急腹症临床处置要点
- 北京市2025学年高二(上)第一次普通高中学业水平合格性考试物理试题(原卷版)
- 《相互作用-力》单元设计
- 机械制造技术课程设计-法兰轴套加工工艺铣R6圆弧槽夹具设计
- 6G移动通信的关键技术与未来发展
评论
0/150
提交评论