2026届江苏省苏州市长桥中学九年级数学第一学期期末监测模拟试题含解析_第1页
2026届江苏省苏州市长桥中学九年级数学第一学期期末监测模拟试题含解析_第2页
2026届江苏省苏州市长桥中学九年级数学第一学期期末监测模拟试题含解析_第3页
2026届江苏省苏州市长桥中学九年级数学第一学期期末监测模拟试题含解析_第4页
2026届江苏省苏州市长桥中学九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省苏州市长桥中学九年级数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.函数与()在同一坐标系中的图象可能是()A. B. C. D.2.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点,分别交PA、PB于E、F,且PA=1.则△PEF的周长为()A.1 B.15 C.20 D.253.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6) B.(9,6) C. D.(10,6)4.将抛物线先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A. B. C. D.5.下列事件的概率,与“任意选个人,恰好同月过生日”这一事件的概率相等的是()A.任意选个人,恰好生肖相同 B.任意选个人,恰好同一天过生日C.任意掷枚骰子,恰好朝上的点数相同 D.任意掷枚硬币,恰好朝上的一面相同6.如图是某个几何体的三视图,该几何体是()A.长方体 B.圆锥 C.三棱柱 D.圆柱7.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=1758.从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为()A. B. C. D.9.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.10.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰二、填空题(每小题3分,共24分)11.已知,是关于的方程的两根,且满足,则的值为_______.12.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为3cm,则该莱洛三角形的周长为_______cm.13.如图,在矩形中,,点分别在矩形的各边上,,则四边形的周长是______________.14.如图,点的坐标分别为,若将线段平移至,则的值为_____.15.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)16.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是______.17.小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____.18.如图,一次函数的图象在第一象限与反比例函数的图象相交于A,B两点,当时,x的取值范围是,则_____.三、解答题(共66分)19.(10分)一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面.(1)求圆形滚轮的半径的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:).20.(6分)如图,为固定一棵珍贵的古树,在树干处向地面引钢管,与地面夹角为,向高的建筑物引钢管,与水平面夹角为,建筑物离古树的距离为,求钢管的长.(结果保留整数,参考数据:)21.(6分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.(1)求抛物线的表达式;(2)求的正切值;(3)如果点是抛物线上的一点,且,试直接写出点的坐标.22.(8分)举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A、B、C、D中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.23.(8分)某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值为;(2)该班学生中考体育成绩的中位数落在组;(在A、B、C、D、E中选出正确答案填在横线上)(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.24.(8分)在中,AB=6,BC=4,B为锐角且cosB.(1)求∠B的度数.(2)求的面积.(3)求tanC.25.(10分)如图,在坐标系中,抛物线经过点和,与轴交于点.直线.抛物线的解析式为.直线的解析式为;若直线与抛物线只有一个公共点,求直线的解析式;设抛物线的顶点关于轴的对称点为,点是抛物线对称轴上一动点,如果直线与抛物线在轴上方的部分形成了封闭图形(记为图形).请结合函数的图象,直接写出点的纵坐标的取值范围.26.(10分)已知:抛物线y=2ax2﹣ax﹣3(a+1)与x轴交于点AB(点A在点B的左侧).(1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;(2)如图,当AC⊥BC时,求a的值和AB的长;(3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点P作PH⊥x轴于点H,交BC于点D,作PE∥AC交BC于点E,设△ADE的面积为S,请求出S与h的函数关系式,并求出S取得最大值时点P的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据反比例函数与一次函数的图象特点解答即可.【详解】时,,在一、二、四象限,在一、三象限,无选项符合.时,,在一、三、四象限,()在二、四象限,只有D符合;故选:D.本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由的取值确定函数所在的象限.2、C【分析】由切线长定理知,AE=CE,FB=CF,PA=PB=1,然后根据△PEF的周长公式即可求出其结果.【详解】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,PA=PB=4,∴△PEF的周长=PE+EF+PF=PA+PB=2.故选:C.本题主要考查了切线长定理的应用,解此题的关键是求出△PEF的周长=PA+PB.3、B【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.4、A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线先向左平移1个单位得到解析式:,再向上平移2个单位得到抛物线的解析式为:.

故选:.此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减.5、A【分析】根据概率的意义对各选项分析判断即可得解.【详解】任选人,恰好同月过生日的概率为,A任选人,恰好生肖相同的概率为,B任选人,恰好同一天过生日的概率为,C任意掷枚骰子,恰好朝上的点数相同的概率为,D任意掷枚硬币,恰好朝上的一面相同的概率为.故选:A.本题考查了概率的意义,正确理解概率的含义是解决本题的关键.6、D【分析】首先根据俯视图排除正方体、三棱柱,然后跟主视图和左视图排除圆锥,即可得到结论.【详解】∵俯视图是圆,

∴排除A和C,

∵主视图与左视图均是长方形,

∴排除B,

故选:D.本题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.7、D【分析】增长率问题,一般为:增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【详解】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故根据题意可列方程为:50+50(1+x)+50(1+x)2=1.故选D.本题考查的是一元二次方程的运用,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可.8、B【分析】从题中可以知道,共有5个数,只需求出5个数中为无理数的个数就可以得到答案.【详解】从,-6,1.2,π,中可以知道

π和为无理数.其余都为有理数.

故从数据,-6,1.2,π,中任取一数,则该数为无理数的概率为,

故选:B.此题考查概率的计算方法,无理数的识别.解题关键在于掌握:概率=所求情况数与总情况数之比.9、A【解析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是黄灯的概率为多少.【详解】根据题意可知,每分钟内黄灯亮的时间为秒,每分钟内黄灯亮的概率为,故抬头看是黄灯的概率为.故选A.本题主要考查求随机事件概率的方法,熟悉掌握随机事件A的概率公式是关键.10、D【解析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、5【分析】由韦达定理得,,将其代入即可求得k的值.【详解】解:、是方程的两个根,,.,.故答案为:.本题主要考查根与系数的关系,解题的关键是掌握韦达定理与方程的解的定义.12、【分析】直接利用弧长公式计算即可.【详解】解:该莱洛三角形的周长=3×.故答案为:.本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.13、【分析】根据矩形的对角线相等,利用勾股定理求出对角线的长度,然后根据平行线分线段成比例定理列式表示EF、EH的长度之和,再根据四边形EFGH是平行四边形,即可得解.【详解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,∴四边形EFGH的周长=,故答案为:.本题考查了平行线分线段成比例定理、矩形的对角线相等和勾股定理,根据平行线分线段成比例定理得出是解题的关键,也是本题的难点.14、1【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【详解】由题意可知:a=0+(3-1)=1;b=0+(1-1)=1;

∴a+b=1.故答案为:1.此题考查坐标与图形的变化-平移,解题的关键是得到各点的平移规律.15、2.3【解析】AB是Rt△ABC的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB的长.【详解】在Rt△ABC中,∴∴即斜坡AB的长为2.3m.故答案为2.3.考查解直角三角形的实际应用,熟练掌握锐角三角函数是解题的关键.16、【分析】根据正切的定义即可求解.【详解】解:∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα=,∴,∴t=.故答案为:.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.17、.【分析】根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率.【详解】解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第10次掷这枚硬币时,正面向上的概率是:.故答案为:.本题考查了概率统计的问题,根据概率公式求解即可.18、1.【解析】由已知得A、B的横坐标分别为1,1,代入两解析式即可求解.【详解】由已知得A、B的横坐标分别为1,1,所以有解得,故答案为1.此题主要考查反比例函数与一次函数综合,解题的关键是熟知函数图像交点的性质.三、解答题(共66分)19、(1);(2)【分析】(1)过点作于点,交于点,由平行得到,再根据相似三角形的性质得到,列出关于半径的方程,解方程即可得解;(2)在(1)结论的基础上结合已知条件,利用锐角三角函数解即可得解.【详解】解:(1)过点作于点,交于点,如图:∴∴∴设圆形滚轮的半径的长是∴,即∴∴圆形滚轮的半径的长是;(2)∵∴在中,∴.故答案是:(1);(2)本题考查了解直角三角形以及相似三角形的判定和性质,在求线段长度时,可以通过建立方程模型来解决问题.20、钢管AB的长约为6m【分析】过点C作CF⊥AD于点F,于是得到CF=DE=6,AF=CFtan30°.在Rt△ABD中,根据三角函数的定义即可得到结论.【详解】过点C作CF⊥AD于点F,则CF=DE=6,AF=CFtan30°=62,∴AD=AF+DF=21.5,在Rt△ABD中,AB(21.5)46(m).答:钢管AB的长约为6m.本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.21、(1);(2);(2)点的坐标是或【分析】(1)先求得抛物线的对称轴方程,然后再求得点C的坐标,设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入求得a的值即可;

(2)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB、AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;

(2)记抛物线与x轴的另一个交点为D.先求得D(1,0),然后再证明∠DBO=∠CAB,从而可证明∠CAO=ABD,故此当点P与点D重合时,∠ABP=∠CAO;当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设BE=t,则PE=2t,P(-2t,2+t),将P(-2t,2+t)代入抛物线的解析式可求得t的值,从而可得到点P的坐标.【详解】解:(1)抛物线的对称轴为x=-=-1.

∵a<0,

∴抛物线开口向下.

又∵抛物线与x轴有交点,

∴C在x轴的上方,

∴抛物线的顶点坐标为(-1,4).

设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入得:4a+4=0,解得:a=-1,

∴抛物线的解析式为y=-x2-2x+2.

(2)将x=0代入抛物线的解析式得:y=2,

∴B(0,2).

∵C(-1,4)、B(0,2)、A(-2,0),

∴BC=,AB=2,AC=2,

∴BC2+AB2=AC2,

∴∠ABC=90°.

∴.即的正切值等于.

(2)如图1所示:记抛物线与x轴的另一个交点为D.

∵点D与点A关于x=-1对称,

∴D(1,0).

∴tan∠DBO=.

又∵由(2)可知:tan∠CAB=.

∴∠DBO=∠CAB.

又∵OB=OA=2,

∴∠BAO=∠ABO.

∴∠CAO=∠ABD.

∴当点P与点D重合时,∠ABP=∠CAO,

∴P(1,0).

如图2所示:当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.

∵BF∥AO,

∴∠BAO=∠FBA.

又∵∠CAO=∠ABP,

∴∠PBF=∠CAB.

又∵PE∥BF,

∴∠EPB=∠PBF,

∴∠EPB=∠CAB.

∴tan∠EPB=.

设BE=t,则PE=2t,P(-2t,2+t).

将P(-2t,2+t)代入抛物线的解析式得:y=-x2-2x+2得:-9t2+6t+2=2+t,解得t=0(舍去)或t=.

∴P(-,).

综上所述,点P的坐标为P(1,0)或P(-,).本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含t的式子表示点P的坐标是解题的关键.22、(1);(2).【解析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解答:(1)一辆车经过收费站时,选择A通道通过的概率是,故答案为.(2)列表如下:ABCDAAAABACADBBABBBCBDCCACBCCCDDDADBDCDD由表可知,共有16种等可能结果,其中选择不同通道通过的有12种结果,所以选择不同通道通过的概率为=.本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.23、(1)18;(2)D组;(3)图表见解析,【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案为:18;(2)∵全班学生人数有50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段,∴落在D段故答案为:D;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6种等情况数,∴恰好选到一男一女的概率是==.此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键.24、(1)60°;(2);(3)【解析】(1)直接利用三角函数值,即可求出∠B的度数;(2)过A作AD⊥BC于D,根据cosB,可求出BD的值,利用勾股定理可求出AD的值,即可求得的面积;(3)利用正切概念即可求得tanC的值;【详解】解:(1)∵B为锐角且cosB,∴∠B=60°;(2)如图,过A作AD⊥BC于D,在Rt中,cosB,∵AB=6,∴BD=3,∴,∴,(3)∵BD=3,BC=4,∴CD=1,∴在Rt中,tanC.本题考查了三角函数的定义及性质,掌握三角函数的性质是解题的关键.25、(1);(2);(3).【分析】(1)将两点坐标直接代入可求出b,c的值,进而求出抛物线解析式为,得出C的坐标,从而求出直线AC的解析式为y=x+3.(2)设直线的解析式为,直线与抛物线只有一个公共点,方程有两个相等的实数根,再利用根的判别式即可求出b的值.(3)抛物线的顶点坐标为(-1,4),关于y轴的对称点为M(1,4),可确定M在直线AC上,分直线不在直线下方和直线在直线下方两种情况分析即可得解.【详解】解:将A,B坐标代入解析式得出b=-2,c=3,∴抛物线的解析式为:当x=0时,y=3,C的坐标为(0,3),根据A,C坐标可求出直线AC的解析式为y=x+3.直线,设直线的解析式为.直线与抛物线只有一个公共点,方程有两个相等的实数根,,解得.直线的解析式为..解析:如图所示,,抛物线的顶点坐标为.抛物线的顶点关于轴的对称点为.当时,,点在直线上.①当直线不在直线下方时,直线能与抛物线在第二象限的部分形成封闭图形.当时,.当直线与直线重合,即动点落在直线上时,点的坐标为.随着点沿抛物线对称轴向上运动,图形逐渐变小,直至

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论