




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江省台州市玉环市数学九年级第一学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口25万人,通过社会各界的努力,2019年底贫困人口减少至9万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意可列方程()A.25(1﹣2x)=9 B.C.9(1+2x)=25 D.2.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:23.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.(x-1)2=(x+3)(x-2)+1C.x=x2 D.ax2+bx+c=04.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45° B.15° C.10° D.125°5.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A.19.4 B.19.5 C.19.6 D.19.76.设是方程的两个实数根,则的值为()A.2017 B.2018 C.2019 D.20207.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.“概率为1的事件”是必然事件8.如图,四边形ABCD内接于⊙0,四边形ABCO是平行四边形,则∠ADC的度数为()A.30° B.45° C.60° D.75°9.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5 B.2 C.5或2 D.2或-110.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是()A.a>0 B.b<0C.ac<0 D.bc<011.如图是半径为2的⊙O的内接正六边形ABCDEF,则圆心O到边AB的距离是()A.2 B.1 C. D.12.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.24二、填空题(每题4分,共24分)13.一元二次方程x2﹣5x=0的两根为_________.14.边长为1的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为__________.15.抛物线y=2x2+4x-1向右平移_______个单位,经过点P(4,5).16.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.17.点A(1,-2)关于原点对称的点A1的坐标为________.18.如图,在△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为____.三、解答题(共78分)19.(8分)某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?20.(8分)如图,双曲线()与直线交于点和,连接和.(1)求双曲线和直线的函数关系式.(2)观察图像直接写出:当时,的取值范围.(3)求的面积.21.(8分)已知关于的一元二次方程.(1)若方程有实数根,求的取值范围;(2)若方程的两个实数根的倒数的平方和等于14,求的值.22.(10分)画出如图所示几何体的三视图23.(10分)一次函数y=k1x+b和反比例函数的图象相交于点P(m−1,n+1),点Q(0,a)在函数y=k1x+b的图象上,且m,n是关于x的方程ax2−(3a+1)x+2(a+1)=0的两个不相等的整数根(其中a为整数),求一次函数和反比例函数的解析式.24.(10分)已知反比例函数的图象经过点(2,﹣2).(I)求此反比例函数的解析式;(II)当y≥2时,求x的取值范围.25.(12分)如图,反比例函数的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别为1和﹣2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C的坐标为(0,﹣1)时,求△ABC的面积.26.如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠BAC,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形(尺规作图,保留痕迹);(2)判断并证明:直线DE与⊙O的位置关系;(3)若AB=10,BC=8,求CE的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据2017年贫困人口数×(1-平均下降率为)2=2019年贫困人口数列方程即可.【详解】设年平均下降率为x,∵2017年底有贫困人口25万人,2019年底贫困人口减少至9万人,∴25(1-x)2=9,故选:B.本题考查由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b(a<b);平均降低率问题,在理解的基础上,可归结为a(1-x)2=b(a>b).2、D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=DB,则DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故选D.3、C【详解】A.x2+=0,是分式方程,故错误;B.(x-1)2=(x+3)(x-2)+1经过整理后为:3x-6=0,是一元一次方程,故错误;C.x=x2,是一元二次方程,故正确;D.当a=0时,ax2+bx+c=0不是一元二次方程,故错误,故选C.4、A【分析】由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.【详解】是等边三角形,,,四边形是正方形,,,,,,.
故选:.本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.5、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.6、D【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a是方程的实数根,可得,据此求出,利用根与系数关系得:=-3,变形为()-(),代入即可得到答案.【详解】解:∵a、b是方程的两个实数根,
∴=-3;
又∵,
∴,∴
=()-()=2017-(-3)
=1
即的值为1.
故选:D.本题考查了根与系数的关系与一元二次方程的解,把化成()-()是解题的关键.7、D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为.故C错误;D.“概率为1的事件”是必然事件,正确.故选D.8、C【分析】由题意根据平行四边形的性质得到∠ABC=∠AOC,根据圆内接四边形的性质、圆周角定理列式计算即可.【详解】解:∵四边形ABCO是平行四边形,∴∠ABC=∠AOC,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,由圆周角定理得,∠ADC=∠AOC,∴∠ADC=60°,故选:C.本题考查的是圆内接四边形的性质、圆周角定理以及平行四边形的性质,掌握圆内接四边形的对角互补是解题的关键.9、D【解析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故选:D.本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.10、C【解析】试题解析:由函数图象可得各项的系数:故选C.11、C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB==60°,根据等腰三角形的性质得到∠AOH=30°,AH=AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB==60°,∵OA=OB,∴∠AOH=30°,AH=AB=1,∴OH=AH=,故选:C.本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.12、C【分析】根据用频率估计概率可知:摸到白球的概率为0.25,根据概率公式即可求出小球的总数,从而求出红球的个数.【详解】解:小球的总数约为:6÷0.25=24(个)则红球的个数为:24-6=18(个)故选C.此题考查的是用频率估计概率和根据概率求小球的总数,掌握概率公式是解决此题的关键.二、填空题(每题4分,共24分)13、0或5【解析】分析:本题考查的是一元二次方程的解法——因式分解法.解析:故答案为0或5.14、或【分析】根据正方形的内角为90°,以及同角的余角相等得出三角形的两个角相等,从而推知△ABE∽△ECF,得出,代入数值得到关于CE的一元二次方程,求解即可.【详解】解:∵正方形ABCD,
∴∠B=∠C,∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠BEA+∠CEF=90°,
∴∠BAE=∠CEF,
∴△ABE∽△ECF,.解得,CE=或.故答案为:或.考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大.15、3或7【分析】先化成顶点式,设向右平移个单位,再由平移规律求出平移后的抛物线解析式,再把点(4,5)代入新的抛物线解析式即可求出m的值.【详解】,设抛物线向右平移个单位,得到:,∵经过点(4,5),
∴,化简得:,∴
解得:或.
故答案为:或.本题主要考查了函数图象的平移和一个点在图象上那么这个点就满足该图象的解析式,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.16、1:1.【解析】试题分析:∵△ABC与△DEF的相似比为1:1,∴△ABC与△DEF的周长比为1:1.故答案为1:1.考点:相似三角形的性质.17、(-1,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点A(1,-2)与点A1(-1,2)关于原点对称,∴A1(-1,2).故答案为:(-1,2).本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.18、17°【详解】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC的度数=50°−33°=17°.故答案为17°.三、解答题(共78分)19、(1)50元;(2)涨20元.【分析】(1)设这种台灯上涨了x元,台灯将少售出10x,那么利润为(40+x-30)(600-10x)=10000,解方程即可;
(2)根据销售利润=每个台灯的利润×销售量,每个台灯的利润=售价-进价,列出二次函数解析式,根据二次函数的性质即可求最大利润.【详解】解:(1)设这种台灯上涨了元,依题意得:,化简得:,解得:(不合题意,舍去)或,售价:(元)答:这种台灯的售价应定为50元.(2)设台灯上涨了元,利润为元,依题意:∴对称轴,在对称轴的左侧随着的增大而增大,∵单价在60元以内,∴∴当时,元,答:商场要获得最大利润,则应上涨20元.此题考查一元二次方程和二次函数的实际运用---销售利润问题,能够由实际问题转化为一元二次方程或二次函数的问题是解题关键,要注意的是二次函数的最值要考虑自变量取值范围,不一定在顶点处取得,这点很容易出错.20、(1),;(2)或;(3)【分析】(1)把点A坐标代入可求出双曲线的关系式,进而可得点B坐标,再利用待定系数法即可求出直线的解析式;(2)找出图象上双曲线比直线高的部分对应的x的取值范围即可;(3)过点作轴平行线交轴于点,过点作轴平行线交轴于点,所作两直线相交于,如图,利用代入数据计算即可.【详解】解(1)∵点在双曲线上上,∴,∴,∵点也在双曲线,∴,∵点和点在直线上,∴,解得:,∴直线关系式为;(2)当时,的取值范围是:或;(3)过点作轴平行线,交轴于点,过点作轴平行线,交轴于点,所作两直线相交于,如图,则点E(4,4),∴.本题考查了待定系数法求一次函数和反比例函数的解析式、函数图象上点的坐标特征和三角形的面积等知识,属于常考题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.21、(1)且;(2)【分析】(1)根据方程有实数根得出,且解之可得;
(2)利用根与系数的关系可用k表示出的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍.【详解】解:(1)由于是一元二次方程且有实数根,所以,即,且∴且(2)设方程的两个根为,则,∴整理,得解得根据(1)中且,得.此题主要考查了根的判别式和根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.22、见解析【分析】主视图、左视图、俯视图是分别从几何体的正面、左面和上面所得到的图形,画图时要将几何体边缘和棱以及顶点都体现出来.【详解】解:如下图本题考查的知识点是作简单几何体的三视图,掌握三视图的作法是解题的关键.23、一次函数:或;反比例函数:或【分析】根据点Q在一次函数上,可得a与b的关系,解一元二次方程,可解得,,然后根据方程的两根不等且为整数,可得出的值,从而得出P的坐标,代入可得解析式.【详解】∵点Q(0,a)在函数y=k1x+b的图象上∴代入得:a=bax2−(3a+1)x+2(a+1)=0化简得:[ax-(a+1)](x-2)=0∴,∵方程的2个根都是整数∴a=1时,;a=-1时,∵方程的2个根不相等∴,情况一:m=2,n=0则P(1,1)则一次函数为:y=2x-1,反比例函数为:情况二:m=0,n=2则P(-1,3)则一次函数为:y=-4x-1,反比例函数为:本题考查求一元二次方程的整数解,解题关键是根据2个根为整数且不等分析得出方程的2个根的数值.24、(I)y=﹣;(II)当y≥2时,﹣2≤x<1【分析】(I)利用待定系数法可得反比例函数解析式;(II)利用反比例函数的解析式不求出的点,利用函数图象即可求得答案.【详解】(I)设解析式为y=,把点(2,﹣2)代入解析式得,﹣2=,解得:k=﹣4∴反比例函数的解析式y=﹣;(II)当y=2时,x=﹣2,如图,所以当y≥2时,﹣2≤x<1.本题主要考查了反比例函数的性质以及待定系数法求反比例函数解析式,关键是正确求出函数解析式,画出函数图象的草图.25、(1),y=x+1;(2)2.【解析】试题分析:(1)根据两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025海南事业单位考试试题及答案
- 2025年焊工作业人员职业技能考试笔试试卷及答案
- 2025年下半年铁路机车车辆驾驶人员资格考试专业知识训练题及答案(手机版)
- 合作作文美术培训班合作合同6篇
- 2025年企业人力资源管理师职业技能鉴定等级考试(专业能力)四级中级全真模拟试题及答案一
- 2024政府采购评审专家考试真题库及答案
- 2025年度福建省施工企业三类人员网络继续教育培训班测试题及答案
- 会计从业资格证考试题及答案
- 安全生产法律法规测试题及答案
- 2025防灾减灾知识竞赛题库及参考答案
- 畜牧、兽医科学:家畜环境卫生学题库
- 许继保护装置说明书
- GB/T 2934-2007联运通用平托盘主要尺寸及公差
- GA/T 1476-2018法庭科学远程主机数据获取技术规范
- 《矩阵论》研究生教学课件
- 操作系统第一章答案
- 民用爆炸物品报废及销毁制度(附表单)
- 五大手册-MSA测量系统分析课件
- 小学反邪教工作方案及材料
- 电厂钢结构防腐油漆施工方案(技术规范)
- 供应商审核表-供应商评审报告
评论
0/150
提交评论