山西省晋中学市榆次区2026届数学八上期末统考试题含解析_第1页
山西省晋中学市榆次区2026届数学八上期末统考试题含解析_第2页
山西省晋中学市榆次区2026届数学八上期末统考试题含解析_第3页
山西省晋中学市榆次区2026届数学八上期末统考试题含解析_第4页
山西省晋中学市榆次区2026届数学八上期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省晋中学市榆次区2026届数学八上期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列各式为分式的是()A. B. C. D.2.点P(-2,-8)关于y轴对称点的坐标是(a-2,3b+4),则a、b的值是()A.a=-4,b=-4 B.a=-4,b=4 C.a=4,b=-4 D.a=4,b=-43.下列图形具有稳定性的是()A. B.C. D.4.点M(1,2)关于x轴对称的点的坐标为()A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)5.如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是()A.24° B.30° C.32° D.36°6.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.227.以下列各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm8.一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A.3cm B.4cm C.7cm D.11cm9.如图,在中,,,,边的垂直平分线交于点,交于点,那么的为()A.6 B.4 C.3 D.210.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)二、填空题(每小题3分,共24分)11.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.12.如图等边,边长为6,是角平分线,点是边的中点,则的周长为________.13.在一次函数y=﹣3x+1中,当﹣1<x<2时,对应y的取值范围是_____.14.当x______时,分式有意义.15.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为_________.16.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点的坐标为,另一个顶点的坐标为,则点的坐标为_______.17.若点关于轴的对称点的坐标是,则的值是__________.18.一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.三、解答题(共66分)19.(10分)如图,BF,CG分别是的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE,(1)求证:是等腰三角形.(2)若,求DE的长.20.(6分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.21.(6分)2019年母亲节前夕,某花店用4500元购进若干束花,很快售完了,接着又用4800元购进第二批花,已知第二批所购花的数量是第一批所购花的数量的倍,且每束花的进价比第一批的进价少3元,问第一批花每束的进价是多少元?22.(8分)(尺规作图,保留作图痕迹,不写作法)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF.在所作图中,寻找一对全等三角形,并加以证明.23.(8分)已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE

(1)求证:△ABE≌△BCD;(2)求出∠AFB的度数.24.(8分)(新知理解)如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.(解决问题)如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为cm;(拓展研究)如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)25.(10分)(解决问题)如图1,在中,,于点.点是边上任意一点,过点作,,垂足分别为点,点.(1)若,,则的面积是______,______.(2)猜想线段,,的数量关系,并说明理由.(3)(变式探究)如图2,在中,若,点是内任意一点,且,,,垂足分别为点,点,点,求的值.(4)(拓展延伸)如图3,将长方形沿折叠,使点落在点上,点落在点处,点为折痕上的任意一点,过点作,,垂足分别为点,点.若,,直接写出的值.26.(10分)命题证明.求证:等腰三角形两底角的角平分线相等.已知:________________求证:___________________证明:____________________.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据分式的定义即可求解.【详解】A.是整式,故错误;B.是整式,故错误;C.是整式,故错误;D.是分式,正确;故选D.【点睛】此题主要考查分式的识别,解题的关键是熟知分式的定义.2、D【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点P(-2,-8)关于y轴的对称点P1的坐标是(a-2,3b+1),

∴a-2=2,3b+1=-8,

解得:a=1,b=-1.

故选:D.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.3、A【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.

故选:A.【点睛】本题考查了三角形的稳定性和四边形的不稳定性.4、A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.【详解】点M(1,2)关于x轴对称的点的坐标为:(1,-2).

故选:A.【点睛】此题考查关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.5、C【分析】连接PA,根据线段垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义得到∠PBC=∠ABP,根据三角形内角和定理列式计算即可.【详解】连接PA,如图所示:

∵直线L为BC的垂直平分线,

∴PB=PC,

∴∠PBC=∠PCB,

∵直线M为∠ABC的角平分线,

∴∠PBC=∠ABP,

设∠PBC=x,则∠PCB=∠ABP=x,

∴x+x+x+60°+24°=180°,

解得,x=32°,

故选C.【点睛】考查的是线段垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6、B【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.7、B【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A.2cm,4cm,6cm可得,2+4=6,故不能组成三角形;

B.8cm,6cm,4cm可得,6+4>8,故能组成三角形;

C.14cm,6cm,7cm可得,6+7<14,故不能组成三角形;

D.2cm,3cm,6cm可得,2+3<6,故不能组成三角形;

故选B.【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.8、C【解析】试题解析:设第三边长为xcm,根据三角形的三边关系可得:7-3<x<7+3,解得:4<x<10,故答案为C.考点:三角形三边关系.9、B【解析】连接BE,利用垂直平分线的性质可得AE=BE,从而∠EBA=∠A=30°,然后用含30°角的直角三角形的性质求解.【详解】解:连接BE.∵边的垂直平分线交于点,交于点∴AE=BE∴∠EBA=∠A=30°又∵在中,,∴∠CBA=60°,∴∠CBE=30°∴在中,∠CBE=30°BE=2CE=4即AE=4故选:B.【点睛】本题考查垂直平分线的性质及含30°直角三角形的性质,题目比较简单,正确添加辅助线是解题关键.10、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题(每小题3分,共24分)11、1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.12、6+【分析】由等腰三角形的三线合一的性质得到BD=CD,由勾股定理求出AD,由直角三角形斜边上的中线的性质求出DE,即可求出的周长.【详解】解:∵AB=6,是角平分线,∴BD=CD=3,∴AD===,∵点是边的中点,∴AE=3∴DE=AB=3∴的周长=AD+AE+DE=6+故答案为6+.【点睛】此题主要考查了等腰三角形的性质,勾股定理,,直角三角形斜边上的中线的性质,求出DE和AD的长是解决问题的关键..13、-5<y<1【解析】解:由y=﹣3x+1得到x=﹣,∵﹣1<x<2,∴﹣1<﹣<2,解得﹣5<y<1.故答案为﹣5<y<1.点睛:本题考查了一次函数的性质,根据题意得出关于y的不等式是解答此题的关键.14、x≠-1【分析】根据分式有意义的条件是:分母不等于0,即可求解.【详解】解:根据题意得:x+1≠0,

解得:x≠-1.

故答案是:x≠-1.【点睛】本题主要考查了分式有意义的条件,是一个基础题.15、50°或130°【分析】分类讨论当三角形是等腰锐角三角形和等腰钝角三角形两种情况,画出图形并结合三角形的内角和定理及三角形外角的性质,即可求出顶角的大小.【详解】(1)当三角形是锐角三角形时,如下图.根据题意可知,∵三角形内角和是,∴在中,(2)当三角形是锐角三角形时,如下图.根据题意可知,同理,在中,∵是的外角,∴故答案为或【点睛】本题考察了等腰三角形性质和三角形外角的性质以及三角形内角和定理的运用,分类讨论该等腰三角形是等腰锐角三角形或等腰钝角三角形是本题的关键.16、【分析】如图:分别过B和A作y轴的垂线,垂足分别为D、E;根据余角的性质,可得∠DBC=∠ECA,然后运用AAS判定△BCD≌△CAE,可得CE=BD=6,AE=CD=OD-OC=4即可解答.【详解】解:分别过B和A作y轴的垂线,垂足分别为D、E∴∠BDC=∠AEC=90°∵AC=BC,∠BCA=90°,∠BCD+∠ECA=90°又∵∠CBD+∠BCD=90°∴∠CBD=∠ECA在△BCD和△CAE中∠BDC=∠AEC=90°,∠CBD=∠ECA,AC=BC∴△BCD≌△CAE(AAS)∴CE=BD=6,AE=CD=OD-OC=4∴OE=CE-0C=6-2=4∴B点坐标为(4,-4).故答案为(4,-4).【点睛】本题考查了全等三角形的判定与性质,根据题意构造出全等三角形是解答本题的关键.17、-1【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得3=n,m+4=0,解出m、n的值,可得答案.【详解】解:∵点关于轴的对称点的坐标是,∴3=n,m+4=0,∴n=3,m=-4,∴m+n=-1.故答案为:-1.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.18、1【分析】先求出体育优秀的占总体的百分比,再乘以360°即可.【详解】解:圆心角的度数是:故答案为:1.【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.三、解答题(共66分)19、(1)证明见详解;(2)4.【分析】(1)由BF,CG分别是的高线,点D是BC的中点,可得:DG=BC,DF=BC,进而得到结论;(2)由是等腰三角形,点E是FG的中点,可得DE垂直平分FG,然后利用勾股定理,即可求解.【详解】(1)∵BF,CG分别是的高线,∴CG⊥AB,BF⊥AC,∴△BCG和△BCF是直角三角形,∵点D是BC的中点,∴DG=BC,DF=BC,∴DG=DF,∴是等腰三角形;(2)∵BC=10,∴DF=BC=×10=5,∵是等腰三角形,点E是GF的中点,∴DE⊥GF,EF=GF=×6=3,∴.【点睛】本题主要考查直角三角形的性质“直角三角形斜边上的中线等于斜边的一半”,勾股定理以及等腰三角形的判定和性质,结合图形,找出图形中的等腰三角形和直角三角形,是解题的关键.20、(1)证明见解析;(2)AD=2+2.【解析】(1)根据角边角定理证明△ADC≌△BDF,得AC=BF,根据等腰三角形三线合一的性质知AC=2AE,从而得BF=2AE;(2)根据△ADC≌△BDF,得DF=CD,根据勾股定理得CF,根据线段垂直平分线上的点到线段两端点的距离相等得AF=CF,DF+AF即为AD的长.【详解】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AF,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=2,在Rt△CDF中,,∵BE⊥AC,AE=EC,∴AF=CF=2,∴.【点睛】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理及线段垂直平分线的判定与性质等知识.证明△ADC≌△BDF是解答本题的关键.21、第一批花每束的进价为15元【分析】根据题意设第一批花每束的进价为元,则第二批花每束进价为元,以此建立分式方程并求解分式方程即可得出答案.【详解】解:设第一批花每束的进价为元,则第二批花每束进价为元,依题意有:,解得:.答:第一批花每束的进价为15元.【点睛】本题考查分式方程的实际应用,理解题意利用直接设未知数的方法并根据题意列出分式方程求解是解题的关键.22、作图见解析;△BOE≌△BOF;证明见解析【分析】先根据题意作图,再利用三角形全等的判定定理AAS判定△BOE≌△BOF全等即可.【详解】作图如下:△BOE≌△BOF证明:∵BD平分∠ABC,∴∠ABO=∠OBF∵EF⊥BD,∴∠BOE=∠BOF=90°,在△BOE和△BOF中,∴△BOE≌△BOF(ASA)【点睛】本题不但考查了学生对常用的画图方法有所掌握,还要对全等三角形的判定方法能熟练运用.23、(1)见解析;(2)120°.【解析】试题分析:(1)根据等边三角形的性质得出AB=BC,∠BAC=∠C=∠ABE=60°,根据SAS推出△ABE≌△BCD;(2)根据△ABE≌△BCD,推出∠BAE=∠CBD,根据三角形的外角性质求出∠AFB即可.解:(1)∵△ABC是等边三角形,∴AB=BC(等边三角形三边都相等),∠C=∠ABE=60°,(等边三角形每个内角是60°).在△ABE和△BCD中,,∴△ABE≌△BCD(SAS).(2)∵△ABE≌△BCD(已证),∴∠BAE=∠CBD(全等三角形的对应角相等),∵∠AFD=∠ABF+∠BAE(三角形的一个外角等于与它不相邻的两个内角之和)∴∠AFD=∠ABF+∠CBD=∠ABC=60°,∴∠AFB=180°﹣60°=120°.考点:全等三角形的判定与性质;等边三角形的性质.24、(1);(2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;

(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】

如图②,作点E关于AD的对称点F,连接PF,则PE=PF,

当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),

当CF⊥AB时,CF最短,此时BF=AB=3(cm),

∴Rt△BCF中,CF=(cm),

∴PC+PE的最小值为3c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论