版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE16页2024-2025学年第一学期教学质量监测二八年级数学第一部分:选择题(30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项符合题目要求,请将答案填在答题卡上)中国“二十四节气”已列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )A. B.C. D.现有两根长度分别为20cm和30cm的木条,要选择第三根木条,把它们钉成一个三角形木架,则第三根木条的长度可以是( )10cm B.25cm C.50cm D.55cm将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A.105° B.75° C.65° D.55°如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是( )SAS B.ASA C.AAS D.SSS下列各式中,计算正确的是( )Aa2a4a6 B.a3a32a3.a32a6
D.2y36x3y3一个多边形每一个外角都等于45,则这个多边形的边数为( )A.12 B.10 C.8 D.6知xa=2,xb=5,则xa+b等于( )A.7 B.10 C.20 D.50图在VABC中,点D在BC,,2则BC( )A.4 B.5 C.6 D.8下列选项所给条件能画出唯一△ABC的是( )A AC3,AB4,BC8 B.A50,B30,AB2,AB90 如图,在Rt△ABC中,ACB90,AC6,BC8,AB10,AD是BAC的平分线.若P,Q分别是AD和AC上的动点,则PCPQ的最小值是( )A.2.4 B.4.8 C.4 D.5第二部分:填空与解答题(90分)二、填空题(6318分,请将答案填在答题卡上)在VABC中,ABAC,C65,则B .凸七边形的内角和是 度.13.计算:15x2y10xy25xy .如图,已知VABC21OBOC分别平分ABC和ACBOD
OD4,VABC的面积是 .如图,已知B20,C25,若PM和QN分别垂直平分AB和AC,则PAQ °.如图在等边三角形ABC中,DE∥BC,EBEF若BD4,BF8则线段DE的长为 .三、解答题(972分,解答应写出文字说明、证明过程或演算步骤)17.(xy)(x3yx(x2y.一个多边形的内角和与外角和的差为1260如图,点A,F,B,E在同一条直线上,AD,DEBC,ABDE.求证:CDFE.VABC的A52B3,5C11,画出VABCy轴对称的△A1B1C1;求△A1B1C1的面积.(1)已知,如图,在三角形ABC中,ADBC边上的高.尺规作图:作ABC的平分线l(保留作图痕迹,不写作法,写出结论)﹔(2)lADEBEACBDADABBC.aba6个大小相同的小长方形放入到大长方形内.长形宽m 长n 长宽用含ab式来示.求在大长方形中,阴影部分的面积(a,b的式子来表示)若b2aSSS2
.S1 2S1已知在VABCABACDABBCDA.1,试说明CDCB的理由;2BBEACEBE与CDF.①试说明BCD2CBE的理由;②如果VBDF是等腰三角形,求A的度数.2的等边VABCADBC边上的中线,EADBEBE的下方作等边△BEF.BDDE时,连接CF,①ABF .△ABE≌△CBFDFVBDF的周长是否有最小值,若有请求出此时DBF的度数;若没有请说明理由.OAa,0,B,bb满足a42b40,ABOBA45.AB的坐标.PO1个单位/ytAPP作PAGE122页PMAPPMPAMtM的坐标.在(2)MBxQAMBPMx轴于点R,SMQA28R的坐标.2024-2025学年第一学期教学质量监测二八年级数学第一部分:选择题(30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项符合题目要求,请将答案填在答题卡上)中国“二十四节气”已列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,根据轴对称图形的定义逐项分析即可得解,熟练掌握轴对称图形的概念,是解题的关键.【详解】解:A、沿一条直线折叠,直线两旁的部分不能够互相重合,不是轴对称图形,故不符合题意;B、沿一条直线折叠,直线两旁的部分不能够互相重合,不是轴对称图形,故不符合题意;C、沿一条直线折叠,直线两旁的部分不能够互相重合,不是轴对称图形,故不符合题意;D、沿一条直线折叠,直线两旁的部分能够互相重合,是轴对称图形,故符合题意;故选:D.现有两根长度分别为20cm和30cm的木条,要选择第三根木条,把它们钉成一个三角形木架,则第三根木条的长度可以是( )10cm B.25cm C.50cm D.55cm【答案】B【解析】【分析】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.首先设第三根木条的长度为xcm,根据三角形的三边关系:三角形两边之和大于第三边.三角形的两边差小于第三边,可得3020x3020,再解即可.【详解】解:设第三根木条的长度为xcm,根据三角形的三边关系可得:3020x3020,即:10x50,B符合要求,故选:B将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A.105° B.75° C.65° D.55°【答案】B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:由三角形的外角性质可知:∠α=30°+45°=75°,故选:B.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是( )SAS B.ASA C.AAS D.SSS【答案】D【解析】【分析】本题考查了尺规作图—做一个角等于已知角,全等三角形的判定和性质,熟练掌握尺规作图的方法和步骤是关键,根据全等三角形的判定方法SSS,SAS,AAS,ASA,HL,以及全等三角形对应角相等,即可解答.ACABDEDF,BCEF,在VABC和DEF中,ACDFABDE,BCEF∴ABC≌DEFSSS,故选:D.下列各式中,计算正确的是( )A.a2a4a6 B.a3a32a3.a32a6
D.2y36x3y3【答案】C【解析】【分析】本题考查了整式的运算,利用合并同类项,同底数幂的乘法,幂的乘方,积的乘方的运算法则分别对各项进行运算即可,熟练掌握运算法则是解题的关键.【详解】A、a2a4不可以合并,原选项计算错误,不符合题意;Ba3a3a33a6,原选项计算错误,不符合题意;C、a32a6D、2y38x3y3C.一个多边形每一个外角都等于45,则这个多边形的边数为( )A.12 B.10 C.8 D.6【答案】C【解析】【分析】本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数与正多边形的边数之间的关系,是解题关键.根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.3608,45故选:C.知xa=2,xb=5,则xa+b等于( )A.7 B.10 C.20 D.50【答案】B【解析】【分析】先逆用同底数幂乘法法则,然后代入运算即可.【详解】解:xa+b=xaxb=2×5=10.故选:B【点睛】本题考查了同底数幂的乘法法则,掌握同底数幂乘法法则的逆用是解答本题的关键.图在VABC中,点D在BC,,2则BC( )A4 B.5 C.6 D.8【答案】C【解析】【分析】本题考查了等腰三角形的性质,直角三角形的性质,解题的关键在于熟练掌握相关性质定理.根据等腰三角形的性质求出B和BAC30所对应的边是斜边的一半求出BDADCDBC长度.【详解】解:ABACC30,BC30,BAC120,ABAD,AD2,BD2AD4,BAD90,CADBACBAD1209030,CADDCA30,ADCD2,BCBDCD426.故选:C.9.下列选项所给条件能画出唯一△ABC的是()A.AC3,AB4,BC8,AB90B.D.A50,B30,AB2【答案】B【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A、3+4=7<8,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;(ASA)能画出唯一△ABC,故此选项正确;C、∠C=90°,AB=90,不能根据(SA)画出唯一三角形,故本选项错误;D、AC=4,AB=5,∠B=60°,不能根据(SSA)画出唯一三角形,故本选项错误;故选:B.【点睛】本题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.如图,在Rt△ABC中,ACB90,AC6,BC8,AB10,AD是BAC的平分线.若P,Q分别是AD和AC上的动点,则PCPQ的最小值是( )A.2.4 B.4.8 C.4 D.5【答案】B【解析】【分析】由题意可以把QADAB的OPCPQ的最小值问题即变为CAB上某一点O的最短距离问题,最后根据“垂线段最短”的原理得解.【详解】解:如图,作QAD的对称点OPQPOPO,过点C作CM
所以OP、CCOPCPOPCPQPCPQ有可能取得最小值,当COAB即CO移到CMCO的长度最小,PCPQ的最小值即为CM的长度,
1ABCM1ACCB,2 2CM684.8PCPQ的最小值为4.8.10故选:B.【点睛】本题考查了轴对称最短路径问题,垂线段最短,通过轴对称把线段和最小的问题转化为线段外一点到线段某点连线段最短问题是解题关键.第二部分:填空与解答题(90分)二、填空题(6318分,请将答案填在答题卡上)在VABC中,ABAC,C65,则B .【答案】65【解析】【分析】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解答本题的关键.利用等边对等角直接求解即可.【详解】解:如图:ABAC,∠C65,BC65,65.凸七边形的内角和是 度.【答案】900【解析】【分析】本题主要考查了多边形内角和定理.应用多边形的内角和公式计算即可.【详解】解:七边形的内角和n218072180900,故答案为:900.13.计算:15x2y10xy25xy .【答案】3x2y【解析】【分析】本题考查了多项式除以单项式,根据多项式除以单项式法则计算即可.【详解】解:原式15x2y5xy10xy25xy3x2y,3x2y.如图,已知VABC21OBOC分别平分ABC和ACBODOD4,VABC的面积是 .【答案】42【解析】
【分析】本题主要考查了角平分线的性质及三角形面积的求法,熟练掌握角平分线的性质是解决本题的关键.根据角平分线的性质可得OEOFOD4,从而可得到VABC2,代入求出即可.【详解】如下图,连接OA,过O作OEABEOFACF,QOB、OC分别平分ABC和ACB,OA是BAC的平分线,∵OEAB,OFAC,ODBC∴OEOFOD4,ABC21,
1ABOE1BCOD1ACOF2 2 21(ABBCAC)421214242,42.如图,已知B20,C25,若PM和QN分别垂直平分AB和AC,则PAQ °.【答案】90【解析】PM和QNABAC,得出2B1C,根据三角形内角和性质列式作答即可.【详解】解:如图:PM和QNABAC,APPB,AQQC,2B,1C,B20,C25,31802(BC)90,故答案为:90.如图在等边三角形ABC中,DE∥BC,EBEF若BD4,BF8则线段DE的长为 .【答案】2【解析】EEHBCH,根据VABCDEBC,得到VADE是等边三角形,EBEFBHFH1BF4BD4ECBD4,在△EHC中,求得2HC1EC2BCBHHC6ACBC6ECEA4AE即可求得线段2AE2DE的长.本题主要考查等边三角形的判定和性质,等腰三角形的性质与判定,含有30角的直角三角形的性质,熟练掌握相关知识点是解题的关键.EEHBCH,∵VABC是等边三角形,∴∠ABC∠ACB∠A60,ABBCCA,PAGE1022页∵DE∥BC,∴ADEAEDABCACBA60,∴VADE是等边三角形,∴ACAEABAD,∴CEBD,∵BD4,∴CE4,∵EBEF,EHBC,BF8,∴BHFH1BF4,HEC30,2∴HC1EC2,2∴BCBHHC6,∴ACBC6ECEA4AE,∴AE2,∴DE2.2.三、解答题(972分,解答应写出文字说明、证明过程或演算步骤)17.(xy)(x3yx(x2y.【答案】-3y2【解析】【分析】利用多项式乘以多项式、单项式乘以多项式计算以后,再合并即可.【(xy)(x3yx(x2y)=x2+3xy-xy-3y2-x2-2xy=-3y2.【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行化简是解此题的关键.一个多边形的内角和与外角和的差为1260【答案】11【解析】【详解】分析:设多边形的边数是n,则内角和为(n-2)·180,外角和为360°,然后根据内角和与外角和的差为1260度列方程求解即可.详解:设多边形的边数是n,则(n-2)·180-360=1260.解得n=11.11.点睛:本题考查了多边形的内外角和的应用,熟练掌握多边形的内角和公式和外角和是解答本题的关键.如图,点A,F,B,E在同一条直线上,AD,DEBC,ABDE.求证:CDFE.【答案】详见解析【解析】【分析】本题考查了全等三角形的性质与判定,平行线的性质,根据DEBC得出ABCE,进而证明ABC≌DEFASA,根据全等三角形的性质即可得证.【详解】证明:DEBC,ABCE.又ADABDE,CDFE.VABCA52B3,5C11,画出VABCy轴对称的△A1B1C1;求△A1B1C1的面积.【答案(1)见解析 (2)12【解析】【分析】本题考查坐标与图形变换—轴对称,求三角形面积,A,B,CA1B1C1,顺次连接即可;A1B1C1的面积即可.1详解】△A1B1C1即为所求,;2详解】解;S 6616312316412.
2 2 2(1)已知,如图,在三角形ABC中,ADBC边上的高.尺规作图:作ABC的平分线l(保留作图痕迹,不写作法,写出结论)﹔(2)lADEBEACBDADABBC.((见解析【解析】(1)直接运用“角平分线——尺规作图”的方法进行作图即可.(2)EEH⊥ABHAB分成两部分,再证明ВH=BD,AH=CD,即可求证.(1)∠ABC的角平分线如图所示:(2)EEH⊥ABH,∵BE平分∠ABC,EH⊥AB,ED⊥ВC,∴EH=ED,∵BE=BE,△DE△HEHL,∵ВH=BD,
BDADRt△BDERt△ADC中BEAC,△DE△DCHL,∴DE=DC,∴HE=CD,∵AD=BD,∠ADB=90°,∴∠BAD=45°,∵HE⊥AB,∴∠HEA=∠HAE=45°,∴HE=AH=CD,∴BC=BD+CD=BH+AH=AB.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质及角平分线的尺规作图,掌握全等三角形的判定定理和正确作出辅助线是解题关键.aba6个大小相同的小长方形放入到大长方形内.长形宽m 长n 长宽用含ab式来示.求在大长方形中,阴影部分的面积(a,b的式子来表示)2若b2aSSS22
.S1S1(1)2ab4ab(2)2a2b2(3)14【解析】(1)利用整式的加减即可求解;利用多项式乘法求得大长方形的面积,再利用大长方形的面积减去6个小长方形的面积即可求解;当b2aa表示出大长方形的面积,阴影部分的面积,代入即可求解.1详解】解:大长方形的宽maba2ab,n3aab4ab,2ab4ab;2详解】解:大长方形面积为2ab4ab8a22ab4abb28a26abb2,故阴影部分的面积8a26abb26aab8a26abb26a26ab2a2b2;3详解】解:当b2aS1
8a26abb28a212a24a224a2;2S2a2b22a22a26a2;2S 6a2 1∴2 ,1S 2 411.4【点睛】此题考查了列代数式,代数式求值,整式的混合运算涉及的知识有:多项式乘以多项式法则,合并同类项法则,认真观察图形,弄清题意是解本题的关键.已知在VABCABACDABBCDA.1,试说明CDCB的理由;2BBEACEBE与CDF.①试说明BCD2CBE的理由;②如果VBDF是等腰三角形,求A的度数.【答案(1)见解析 (2)①见解析;②45或36【解析】【分析】本题考查等腰三角形的判定及性质,三角形的内角和定理及外角的性质,结合图形分情况讨论是解决问题的关键.根据等腰三角形的性质可得∠ABCACBBDCAACD,从而可得BDCACB,然后根据等量代换可得ABCBDC.再根据等角对等边可得CDCB,即可解答;①根据垂直定义可得BEC90,从而可得CBEACB90,然后设CBE,则ACB90,利用(1)的结论可得ACBABCBDC90,最后利用三角形内角和定理可得BCD2,即可解答;②根据三角形的外角性质可得DDFDBDFFBFD时;分别进行计算即可解答.1详解】ABAC,∴∠ABCACB,BDC是△ADC的一个外角,∴BDCAACD,∵ACBBCDACD,BCDA,∴BDCACB,ABCBDC.∴CDCB;2详解】BEAC,∴BEC90,∴CBEACB90,设CBE,则ACB90,∴ACBABCBDC90,∴BCD2CBE;BFD是VCBF的一个外角,分三种情况:BDBF时,∵ACBABCBDC90,∴22.5,∴ABCD245;DBDF时,CBE90902,∴18,∴ABCD236;FBFD时,∴DBEBDF,∵BDFABCDBF,FBFD,综上所述:如果VBDF是等腰三角形,A45或36.2的等边VABCADBC边上的中线,EADBEBE的下方作等边△BEF.BDDE时,连接CF,①ABF .△ABE≌△CBFDFVBDF的周长是否有最小值,若有请求出此时DBF的度数;若没有请说明理由.(1)75,②证明过程(2)30【解析】(1)①根据等边三角形的性质可得ABCEBF60ADB90,再根据等腰直角三角形的性质可得EBDBED45,求得CBF15,再利用ABF=ABCCBF求解即可;②根据等边三角形的性质可得ABCEBF60,ABBCBEBF,再利用等量代换可得ABECBF,再根据全等三角形的判定证明即可;(2)连接CF,由②同理可证ABE≌CBFSAS,可得BCFBAD30D关于CFG,连接CG、DGDFFGBFG三点共线,BFDFBGBGCGVBDF的周长最小,再根据等边三角形的性质求解即可.1详解】解:①∵VABC、△BEF是等边三角形,∴ABCEBF60,ADBC边上的中线,ADBC,即ADB90,∵BDDE,∴EBDBED45,∴CBF=EBFEBD=6045=15,ABF=ABCCBF=6015=75,75;②证明:∵VABC、△BEF是等边三角形,∴ABCEBF60,ABBC,BEBF,∵ABEEBD60,CBFEBD60,∴ABECBF,∴ABE≌CBFSAS;2详解】解:连接CF,∵VABC、△BEF是等边三角形,∴ABCEBF60,ABBC,BEBF,∵ABEEBD60,CBFEBD=60,∴ABE=CBF,∴ABE≌CBFSAS;ADBC边上的中线,∴BCFBAD30,D关于CFG,连接CGDGDFFG,B、F、GBFDFBGBGCGVBDF的周长最小,DCG2BCF60CDCG,∴△DCG是等边三角形,∴DG=DC=DB,∴CGDCDG60,BGCG,即CGB90,∴CB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冷冻产品仓储合同范本
- 合同履行期外补充协议
- 共同扶养孩子的协议书
- 合伙人股权协议书合同
- 债务转让股权合同范本
- 合伙泵车转让合同协议
- 厂地厂房租用合同范本
- 众筹餐厅协议合同范本
- 协议的时间期限协议书
- 关于电商建设合同范本
- 《大学生劳动教育与实践》 第一章
- 伴生气凝析油工艺安全管理
- 恬谈人生:夏培肃传
- 棚户区改造梁侧预埋悬挑脚手架设计计算书
- 《浅谈幼儿园劳动教育实施策略》 论文
- 抗菌药物使用管理制度
- 基于《中国高考评价体系》下的2023年高考物理命题趋势及复习备考策略
- 经外周静脉穿刺中心静脉置管术
- GB/T 13452.2-2008色漆和清漆漆膜厚度的测定
- 远程会诊登记本
- 高速公路改扩建工程施工作业指导书
评论
0/150
提交评论