版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省中学山市四中学2026届数学九上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图所示,几何体的左视图为()A. B. C. D.2.如图,⊙O是△ABC的外接圆,连接OA、OB,∠C=40°,则∠OAB的度数为()A.30° B.40° C.50° D.80°3.关于抛物线y=3(x-1)2+2,下列说法错误的是()A.开口方向向上 B.对称轴是直线x=lC.顶点坐标为(1,2) D.当x>1时,y随x的增大而减小4.下面的图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.5.二次函数的顶点坐标是()A. B. C. D.6.如图,点、、在上,,,则的度数为()A. B. C. D.7.已知一个几何体如图所示,则该几何体的主视图是()A. B.C. D.8.用配方法解一元二次方程,配方后的方程是()A. B. C. D.9.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当1<a<5时,点B在⊙A内B.当a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外10.下列根式中属于最简二次根式的是()A. B.C. D.11.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2) B.(3,1) C.(2,2) D.(4,2)12.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.8二、填空题(每题4分,共24分)13.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.14.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).15.已知抛物线,如果把该抛物线先向左平移个单位长度,再作关于轴对称的图象,最后绕原点旋转得到新抛物线,则新抛物线的解析式为______.16.如右图是一个立体图形的三视图,那么这个立体图形的体积为______.17.如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD=2m,弧CD所对的圆心角为∠COD=120°.现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为__m.18.我区某校举行冬季运动会,其中一个项目是乒乓球比赛,比赛为单循环制,即所有参赛选手彼此恰好比赛一场.记分规则是:每场比赛胜者得3分、负者得0分、平局各得1分.赛后统计,所有参赛者的得分总知为210分,且平局数不超过比赛总场数的,本次友谊赛共有参赛选手__________人.三、解答题(共78分)19.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元20.(8分)计算:2sin30°﹣cos45°﹣tan230°.21.(8分)某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(10分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.23.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度数;(2)求证:AE是⊙O的切线.24.(10分)如图,已知中,,为上一点,以为直径作与相切于点,连接并延长交的延长线于点.(1)求证:;(2)若,求的长.25.(12分)数学兴趣小组对矩形面积为9,其周长m的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.(1)建立函数模型.设矩形相邻两边的长分别为x,y,由矩形的面积为9,得xy=9,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第象限内交点的坐标.(2)画出函数图象.函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象.①当直线平移到与函数y=(x>0)的图象有唯一交点(3,3)时,周长m的值为;②在直线平移过程中,直线与函数y=(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论面积为9的矩形,它的周长m的取值范围为.26.2019年某市猪肉售价逐月上涨,每千克猪肉的售价(元)与月份(,且为整数)之间满足一次函数关系:,每千克猪肉的成本(元)与月份(,且为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为元,月份成本为元.(1)求与之间的函数关系式;(2)设销售每千克猪肉所获得的利润为(元),求与之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?
参考答案一、选择题(每题4分,共48分)1、A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形故选:A.本题考查简单组合体的三视图,难度不大.2、C【分析】直接利用圆周角定理得出∠AOB的度数,再利用等腰三角形的性质得出答案.【详解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故选:C.本题主要考查了三角形的外接圆与外心,圆周角定理.正确得出∠AOB的度数是解题关键.3、D【分析】开口方向由a决定,看a是否大于0,由于抛物线为顶点式,可直接确定对称轴与顶点对照即可,由于抛物线开口向上,在对称轴左侧函数值随x的增大而减小,在对称轴右侧y随x的增大而增大即可.【详解】关于抛物线y=3(x-1)2+2,a=3>0,抛物线开口向上,A正确,x=1是对称轴,B正确,抛物线的顶点坐标是(1,2),C正确,由于抛物线开口向上,x<1,函数值随x的增大而减小,x>1时,y随x的增大而增大,D不正确.故选:D.本题考查抛物线的性质问题,由具体抛物线的顶点式抓住有用信息,会用二次项系数确定开口方向与大小,会求对称轴,会写顶点坐标,会利用对称轴把函数的增减性一分为二,还要结合a确定增减问题.4、D【解析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A.不是轴对称图形,是中心对称图形,故此选项错误;B.不是轴对称图形,是中心对称图形,故此选项错误;C.是轴对称图形,也是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.5、B【分析】根据抛物线的顶点式:,直接得到抛物线的顶点坐标.【详解】解:由抛物线为:,抛物线的顶点为:故选B.本题考查的是抛物线的顶点坐标,掌握抛物线的顶点式是解题的关键.6、C【分析】根据平行线的性质及圆周角定理即可求解.【详解】∵,∴,∵,∴,故选:C.本题主要考查了圆周角定理及平行线的性质,熟练运用相关知识点是解决本题的关键.7、A【分析】主视图是从物体正面看,所得到的图形.【详解】该几何体的主视图是:故选:A本题考查了三视图的知识,主视图是从物体正面看到的图,掌握定义是关键.8、C【分析】先移项变形为,再将两边同时加4,即可把左边配成完全平方式,进而得到答案.【详解】∵∴∴∴故选C.本题考查配方法解一元二次方程,熟练掌握配方法的解法步骤是解题的关键.9、B【解析】试题解析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项A、C、D正确,选项B错误.故选B.点睛:若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.10、D【分析】根据最简二次根式的概念即可求出答案.【详解】解:A.,故此选项错误;B.,故此选项错误;C.,故此选项错误;D.是最简二次根式,故此选项正确故选:D.本题考查最简二次根式,解题的关键是正确理解最简二次根式的概念,本题属于基础题型.11、A【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.12、B【解析】根据垂径定理,构造直角三角形,连接OC,在RT△OCE中应用勾股定理即可.【详解】试题解析:由题意连接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故选B.二、填空题(每题4分,共24分)13、(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.14、③④⑤【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题.【详解】解:由图象可得,抛物线开口向下,则a<0,抛物线与y轴交于正半轴,则c>0,对称轴在y轴右侧,则与a的符号相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①错误,
当x=-1时,y=a-b+c<0,得b>a+c,故②错误,
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且-1<x1<0,对称轴x=1,
∴x=2时的函数值与x=0的函数值相等,
∴x=2时,y=4a+2b+c>0,故③正确,
∵x=-1时,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正确,
由图象可知,x=1时,y取得最大值,此时y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正确,
故答案为:③④⑤.本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.15、【分析】由抛物线的顶点为(0,0),然后根据平移的性质,轴对称的性质,以及旋转的性质即可得到答案.【详解】解:∵抛物线的顶点坐标为(0,0),图像开口向上,∴向左平移个单位长度,则顶点为:(),∴关于轴对称的图象的顶点为:(2,0),∴绕原点旋转得到新抛物线的图像的顶点为(),且图像开口向下;∴新抛物线的解析式为:.故答案为:.本题考查了二次函数图象与几何变换,解的关键是熟练掌握旋转的性质、轴对称的性质和平移的性质.16、250π【分析】根据三视图可得这个几何体是一个底面直径为10,高为10的圆柱,再根据圆柱的体积公式列式计算即可.【详解】解:根据这个立体图形的三视图可得:这个几何体是一个圆柱,底面直径为10,高为10,
则这个立体图形的体积为:π×52×10=250π,
故答案为:250π.本题考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17、()【分析】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,根据已知条件求出OC和OB的长即可.【详解】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四边形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在这一过程中,窗框上的点到地面的最大高度为(+1)m,故答案为:(+1).本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键.18、2【分析】所有场数中,设分出胜负有x场,平局y场,可知分出胜负的x场里,只有胜利一队即3分,总得分为3x;平局里两队各得1分,总得分为2y;所以有3x+2y=1.又根据“平局数不超过比赛场数的”可求出x与y之间的关系,进而得到满足的9组非负整数解.又设有a人参赛,每人要与其余的(a-1)人比赛,即共a(a-1)场,但这样每两人之间是比赛了两场的,所以单循环即场,即=x+y,找出x与y的9组解中满足关于a的方程有正整数解,即求出a的值.【详解】设所有比赛中分出胜负的有x场,平局y场,得:由①得:2y=1-3x由②得:2y≤x∴1-3x≤x解得:x≥,∵x、y均为非负整数∴,,,……,设参赛选手有a人,得:=x+y化简得:a2-a-2(x+y)=0∵此关于a的一元二次方程有正整数解∴△=1+8(x+y)必须为平方数由得:1+8×(54+24)=625,为25的平方∴解得:a1=-12(舍去),a2=2∴共参赛选手有2人.故答案为:2.本题考查了二元一次方程的应用,一元一次不等式的应用,一元二次方程的应用.由于要求的参赛人数与条件给出的等量关系没有直接联系,故可大胆多设个未知数列方程或不等式,再逐步推导到要求的方向.三、解答题(共78分)19、王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.20、﹣.【分析】原式利用特殊角的三角函数值计算即可得到结果.【详解】解:原式=2×﹣×﹣=1-1-=﹣.故答案为﹣.本题考查了实数的运算.熟练掌握运算法则是解本题的关键.21、4米【分析】由题意过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,并利用解直角三角形进行分析求解即可.【详解】解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.1.∴AE=2.∵AB=57,∴BE=3.∵四边形BCFE是矩形,∴CF=BE=3.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=3.∴BC=EF=30-3=4.答:教学楼BC高约4米.本题考查解直角三角形得的实际应用,利用解直角三角形相关结合锐角三角函数进行分析.22、(1)证明见解析;(2)【解析】试题分析:(1)连接OE,证得OE⊥AC即可确定AC是切线;
(2)根据OE∥BC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.试题解析:解:(1)连接OE.∵OB=OE,∴∠OBE=∠OEB.∵∠ACB=90°,∴∠CBE+∠BEC=90°.∵BD为⊙O的直径,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OE∥BC,∴∠OEA=∠ACB=90°,即OE⊥AC,∴AC为⊙O的切线.(2)∵OE∥BC,∴△AOE∽△ABC,∴OE:BC=AE:AC.∵CE:AE=2:3,∴AE:AC=3:1,∴OE:BC=3:1.∵OE∥BC,∴△OEF∽△CBF,∴.点睛:本题考查了切线的判定,在解决切线问题时,常常连接圆心和切点,证明垂直或根据切线得到垂直.23、(1)60°(2)见解析【分析】(1)根据“同弧所对的圆周角相等”可以得到∠ADC=∠B=60°.(2)欲证明AE是⊙O的切线,只需证明BA⊥AE即可.【详解】解:(1)∵∠B与∠ADC都是弧AC所对的圆周角,∠B=60°,∴∠ADC=∠B=60°(2)证明:∵AB是⊙O的直径,∴∠ACB=90°∵∠B=60°,∴∠BAC=30°又∵∠EAC=60°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE.又∵AB是⊙O的直径,∴AE是⊙O的切线.24、(1)见解析;(2)【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的判定定理得到OD∥AC,求得∠ODE=∠F,根据等腰三角形的性质得到∠OED=∠ODE,等量代换得到∠OED=∠F,于是得到结论;
(2)根据平行得出,再由可得到关于BE的方程,从而得出结论.【详解】(1)证明:连接,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年自考《会展项目管理》真题及部分答案
- 2025年食品安全管理员培训考试试题题库及解析答案
- (2025年)安全生产培训教育考试题库及参考答案
- 解析卷人教版八年级物理上册第6章质量与密度-质量专题测评练习题(含答案解析)
- 强化训练苏科版八年级物理下册《从粒子到宇宙》重点解析试卷(含答案详解版)
- 旅游创新先锋
- 难点解析-人教版八年级物理上册第4章光现象专题攻克试题(解析版)
- 2025年高三生物分析能力与综合题
- 2025年湖南省住房和城乡建设厅下属事业单位考试真题
- 2024年十堰市武当山文旅集团招聘笔试真题
- 2025年cocos lua面试题及答案
- 新闻出版行业中层后备干部培训班学习心得体会
- 同业客户管理办法
- 种养结合生态循环农业项目可行性研究报告
- 全国青少年“学宪法、讲宪法”知识竞赛题库及答案
- 出租库房安全管理办法
- 事故隐患排查治理办法
- 未来飞行器课件
- 美团培训课件
- 《不信教不涉黑不涉恶专题党课》课件
- 新版毛泽东思想和中国特色社会主义理论体系概论章节考点
评论
0/150
提交评论