




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市名校2026届数学九上期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列图形中为中心对称图形的是()A.等边三角形 B.平行四边形 C.抛物线 D.五角星2.在平面直角坐标系中,对于二次函数,下列说法中错误的是()A.的最小值为1B.图象顶点坐标为(2,1),对称轴为直线C.当时,的值随值的增大而增大,当时,的值随值的增大而减小D.它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到3.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.4.如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为()A. B. C. D.5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A. B. C. D.6.方程的根是()A. B. C. D.7.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30° B.45° C.60° D.67.5°8.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米 B.800tanα米 C.米 D.米9.已知二次函数的图象如图所示,下列结论:①,②,③,④,其中正确结论的个数为()A.4个 B.3个 C.2个 D.1个10.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.11.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程()A. B.C. D.12.在一个不透明的袋子里装有5个红球和若干个白球,它们除颜色外其余完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计袋中的白球大约有()个A.10 B.15 C.20 D.25二、填空题(每题4分,共24分)13.如图,中,A,B两个顶点在轴的上方,点C的坐标是(−1,0).以点C为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍,记所得的像是.设点A的横坐标是,则点A对应的点的横坐标是_________.14.如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,乙楼的高h=_____米(结果保留整数≈1.7,≈1.4).15.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.16.如图,P是反比例函数图象在第二象限上一点,且矩形PEOF的面积是3,则反比例函数的解析式为___________.17.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.18.二次函数y=x2−4x+5的图象的顶点坐标为.三、解答题(共78分)19.(8分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)20.(8分)某厂生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多1500元.(1)求甲、乙商品的出厂单价分别是多少?(2)某销售商计划购进甲商品200件,购进乙商品的数量是甲的4倍.恰逢该厂正在对甲商品进行降价促销活动,甲商品的出厂单价降低了,该销售商购进甲的数量比原计划增加了,乙的出厂单价没有改变,该销售商购进乙的数量比原计划少了.结果该销售商付出的总货款与原计划的总货款恰好相同,求的值.21.(8分)用配方法解方程:22.(10分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.设,则即:事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数:,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?计算:某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.23.(10分)如图,在矩形ABCD中,E是AD上的一点,沿CE将△CDE对折,点D刚好落在AB边的点F上.(1)求证:△AEF∽△BFC.(2)若AB=20cm,BC=16cm,求tan∠DCE.24.(10分)某型号飞机的机翼形状如图所示,已知所在直线互相平行且都与所在直线垂直,.,,,.求的长度(参考数,,,,,)25.(12分)如图,四边形内接于⊙,是⊙的直径,,垂足为,平分.(1)求证:是⊙的切线;(2),,求的长.26.光明中学以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨举办首届《诗词大会》,九年级2班的马小梅晋级总决赛,比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.第一环节:横扫千军、你说我猜、初级飞花令,(分别用)表示;第二环节:出口成诗、飞花令、超级飞花令、诗词接龙(分别用表示).(1)请用画树状图或列表的方法表示马小梅参加总决赛抽取题目的所有可能结果;(2)求马小梅参加总决赛抽取题目都是飞花令题目(初级飞花令、飞花令、超级飞花令)的概率.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据中心对称图形的概念求解.【详解】A、等边三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、抛物线不是中心对称图形,故本选项错误;D、五角星不是中心对称图形,故本选项错误.故选:B.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【详解】解:二次函数,,∴该函数的图象开口向上,对称轴为直线,顶点为,当时,有最小值1,当时,的值随值的增大而增大,当时,的值随值的增大而减小;故选项A、B的说法正确,C的说法错误;根据平移的规律,的图象向右平移2个单位长度得到,再向上平移1个单位长度得到;故选项D的说法正确,故选C.本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.3、C【解析】试题解析:这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=.故选C.考点:1.概率公式;2.中心对称图形.4、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可.【详解】解:∵矩形的长为6,宽为3,
∴AB=CD=6,AD=BC=3,
∴弧BD的长=18-12=6,故选:B.此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式5、B【分析】求出△ABC的三边长,再分别求出选项A、B、C、D中各三角形的三边长,根据三组对应边的比相等判定两个三角形相似,由此得到答案.【详解】如图,,AC=2,,A、三边依次为:,,1,∵,∴A选项中的三角形与不相似;B、三边依次为:、、1,∵,∴B选项中的三角形与相似;C、三边依次为:3、、,∵,∴C选项中的三角形与不相似;D、三边依次为:、、2,∵,∴D选项中的三角形与不相似;故选:B.此题考查网格中三角形相似的判定,勾股定理,需根据勾股定理分别求每个三角形的边长,判断对应边的比是否相等是解题的关键.6、D【分析】根据因式分解法,可得答案.【详解】解:解得:,,故选:.本题考查了解一元二次方程,因式分解是解题关键.注意此题中方程两边不能同时除以,因为可能为1.7、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故选:D.本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.8、D【解析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【分析】由抛物线的开口方向、对称轴、与y轴的交点位置,可判断a、b、c的符号,可判断①,利用对称轴可判断②,由当x=-2时的函数值可判断③,当x=1时的函数值可判断④,从而得出答案.【详解】解:∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∵0<-<1,∴b>0,且b<-2a,∴abc<0,2a+b<0,故①不正确,②正确;
∵当x=-2时,y<0,∴4a-2b+c<0,故③正确;∵当x=1时,y>0,∴a+b+c>0,又c>0,∴a+b+2c>0,故④正确;
综上可知正确的有②③④,
故选:B.本题主要考查二次函数图象与系数之间的关系,解题关键是注意掌握数形结合思想的应用.10、D【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.本题考查的是中心对称图形和轴对称图形的定义.11、B【分析】根据题意,找出等量关系列出方程,即可得到答案.【详解】解:根据题意,设此款理财产品每期的平均收益率为x,则;故选择:B.本题考查了一元二次方程的应用——增长率问题,解题的关键是找到等量关系,列出方程.12、C【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为x个,∵摸到红色球的频率稳定在0.2左右,∴口袋中得到红色球的概率为0.2,∴,解得:x=20,经检验x=20是原方程的根,故白球的个数为20个.故选C.此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.二、填空题(每题4分,共24分)13、【分析】△A′B′C的边长是△ABC的边长的2倍,过A点和A′点作x轴的垂线,垂足分别是D和E,因为点A的横坐标是a,则DC=-1-a.可求EC=-2-2a,则OE=CE-CO=-2-2a-1=-3-2a【详解】解:如图,过A点和A′点作x轴的垂线,垂足分别是D和E,∵点A的横坐标是a,点C的坐标是(-1,0).
∴DC=-1-a,OC=1
又∵△A′B′C的边长是△ABC的边长的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.14、1【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,结合图形计算,得到答案.【详解】解:在Rt△ACD中,tan∠CAD=,∴CD=AD•tan∠CAD=30×tan30°=10≈17,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案为:1.本题考查解直角三角形的应用,要注意利用已知线段和角通过三角关系求解.15、【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7,所以小红第二次取出的数字能够整除第一次取出的数字的概率=.故答案为.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16、【分析】根据从反比例函数的图象上任意一点向坐标轴作垂线段,垂线段和坐标轴所围成的矩形的面积是,且保持不变,进行解答即可.【详解】由题意得,∵反比例函数图象在第二象限∴∴反比例函数的解析式为y=-.本题属于基础应用题,只需学生熟练掌握反比例函数k的几何意义,即可完成.17、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.18、(2,1)【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.三、解答题(共78分)19、此时快艇与岛屿C的距离是20nmile.【分析】过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,由DE∥CF,DC∥EF,∠CFE=90°可得出四边形CDEF为矩形,设DE=xnmile,则AE=x(nmile),BE=x(nmile),由AB=6nmile,可得出关于x的一元一次方程,解之即可得出x的值,再在Rt△CBF中,通过解直角三角形可求出BC的长.【详解】解:过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,如图所示.则DE∥CF,∠DEA=∠CFA=90°.∵DC∥EF,∴四边形CDEF为平行四边形.又∵∠CFE=90°,∴▱CDEF为矩形,∴CF=DE.根据题意,得:∠DAB=45°,∠DBE=60°,∠CBF=45°.设DE=x(nmile),在Rt△DEA中,∵tan∠DAB=,∴AE==x(nmile).在Rt△DEB中,∵tan∠DBE=,∴BE==x(nmile).∵AB=20×0.3=6(nmile),AE﹣BE=AB,∴x﹣x=6,解得:x=9+3,∴CF=DE=(9+3)nmile.在Rt△CBF中,sin∠CBF=,∴BC=≈20(nmile).答:此时快艇与岛屿C的距离是20nmile.本题考查了解直角三角形的应用——方向角问题,通过解直角三角形求出BC的长是解题的关键.20、(1)甲商品的出厂单价为900元/件,乙商品的出厂单价为600元/件;(2)的值为1.【分析】(1)设甲商品的出厂单价是x元/件,乙商品的出厂单价为y元/件,根据题意列出方程组,解之即可得出结论;
(2)根据总价=单价×数量结合改变采购计划后的总货款与原计划的总货款恰好相同,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设甲商品的出厂单价为元/件,乙商品的出厂单价为元/件,根据题意,可得,,解得.答:甲商品的出厂单价为900元/件,乙商品的出厂单价为600元/件.(2)根据题意,可得,,令,化简,得,解得,(舍去).∴,即.答:的值为1.本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是找出等量关系,正确列出二元一次方程组与一元二次方程.21、x1=+1,x2=+1【分析】先把方程进行整理,然后利用配方法进行解方程,即可得到答案.【详解】解:∵,∴,∴,∴,∴x1=+1,x2=+1.本题考查了解一元二次方程,解题的关键是熟练掌握配方法进行解一元二次方程.22、(1)3;(2);(3)【分析】设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.参照题目中的解题方法进行计算即可.由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别分别即可求得N的值【详解】设塔的顶层共有盏灯,由题意得.解得,顶层共有盏灯.设,,即:.即由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n项,根据等比数列前n项和公式,求得每项和分别为:每项含有的项数为:1,2,3,…,n,总共的项数为所有项数的和为由题意可知:为2的整数幂,只需将−2−n消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有,不满足N>10,②1+2+4+(−2−n)=0,解得:n=5,总共有满足,③1+2+4+8+(−2−n)=0,解得:n=13,总共有满足,④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有不满足,∴考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.23、(1)证明见解析;(2)【分析】(1)由矩形的性质及一线三等角得出∠A=∠B,∠AEF=∠BFC,从而可证得结论;(2)矩形的性质及沿CE将△CDE对折,可求得CD、AD及CF的长;在Rt△BCF中,由勾股定理得出BF的长,从而可得AF的长;由△AEF∽△BFC可写出比例式,从而可求得AE的长,进而得出DE的长;最后由正切函数的定义可求得答案.【详解】(1)∵在矩形ABCD中,沿CE将△CDE对折,点D刚好落在AB边的点F上∴△CDE≌△CFE∴∠EFC=∠D=90°∴∠AFE+∠BFC=90°∵∠A=90°∴∠AEF+∠AFE=90°∴∠AEF=∠BFC又∵∠A=∠B∴△AEF∽△BFC;(2)∵四边形ABCD为矩形,AB=20cm,BC=16cm∴C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中语文写作专项辅导讲义
- 广东省陆丰市春源双语学校2026届数学九年级第一学期期末综合测试试题含解析
- 证券期货市场信息不对称研究-洞察及研究
- 医护人员急救知识与技能培训
- 空气质量预测模型研究-洞察及研究
- 健康养生咨询室设计方案
- 洛阳足球场建筑施工方案
- 石菖蒲高效繁殖技术-洞察及研究
- 建筑方案设计考试时间够吗
- 超低能耗建筑技术方案设计
- 《心系国防 强国有我》 课件-2024-2025学年高一上学期开学第一课国防教育主题班会
- 2024年新人教版道德与法治七年级上册全册教案(新版教材)
- SJ∕T 2658.12-2015 半导体红外发射二极管测量方法 第12部分:峰值发射波长和光谱辐射带宽
- 2022年全国中学生生物学竞赛(上海赛区)(有解析)
- JGT 352-2017 现浇混凝土空心结构成孔芯模
- Turning Red《青春变形记(2022)》完整中英文对照剧本
- 2024年泰州市现代农业发展集团有限公司招聘笔试冲刺题(带答案解析)
- 公开课氯气的性质课件省公开课金奖全国赛课一等奖微课获奖课件
- 幼儿园花样跳绳培训
- (正式版)SHT 3224-2024 石油化工雨水监控及事故排水储存设施设计规范
- 护理制度与职责
评论
0/150
提交评论