2026届江西省鹰潭市贵溪市数学九年级第一学期期末质量跟踪监视试题含解析_第1页
2026届江西省鹰潭市贵溪市数学九年级第一学期期末质量跟踪监视试题含解析_第2页
2026届江西省鹰潭市贵溪市数学九年级第一学期期末质量跟踪监视试题含解析_第3页
2026届江西省鹰潭市贵溪市数学九年级第一学期期末质量跟踪监视试题含解析_第4页
2026届江西省鹰潭市贵溪市数学九年级第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江西省鹰潭市贵溪市数学九年级第一学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.2.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.3.如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是A. B. C. D.4.如图,⊙O的半径为2,△ABC为⊙O内接等边三角形,O为圆心,OD⊥AB,垂足为D.OE⊥AC,垂足为E,连接DE,则DE的长为()A.1 B. C. D.25.一副三角板如图放置,它们的直角顶点、分别在另一个三角板的斜边上,且,则的度数为()A. B. C. D.6.抛物线y=(x+1)2+2的顶点()A.(﹣1,2)B.(2,1)C.(1,2)D.(﹣1,﹣2)7.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A.106° B.116° C.126° D.136°8.如图,矩形ABCD是由三个全等矩形拼成的,AC与DE、EF、FG、HG、HB分别交于点P、Q、K、M、N,设△EPQ、△GKM、△BNC的面积依次为S1、S2、S1.若S1+S1=10,则S2的值为().A.6 B.8C.10 D.129.若反比例函数y=图象经过点(5,-1),该函数图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限10.如图,点是上的点,,则是()

A. B. C. D.11.方程的根的情况()A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.有两个实数根12.下列方程中,是关于x的一元二次方程的是()A. B. C. D.二、填空题(每题4分,共24分)13.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.14.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____.15.在一只不透明的口袋中放入只有颜色不同的白色球3个,黑色球5个,黄色球n个,搅匀后随机从中摸取一个恰好是白色球的概率为,则放入的黄色球数n=_________.16.方程的解是_______.17.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.18.如图,正六边形ABCDEF中的边长为6,点P为对角线BE上一动点,则PC的最小值为_______.三、解答题(共78分)19.(8分)如图,在中,以为直径的交于点,连接,.(1)求证:是的切线;(2)若,求点到的距离.20.(8分)在平面直角坐标系中,将一块等腰直角三角板(△ABC)按如图所示放置,若AO=2,OC=1,∠ACB=90°.(1)直接写出点B的坐标是;(2)如果抛物线l:y=ax2﹣ax﹣2经过点B,试求抛物线l的解析式;(3)把△ABC绕着点C逆时针旋转90°后,顶点A的对应点A1是否在抛物线l上?为什么?(4)在x轴上方,抛物线l上是否存在一点P,使由点A,C,B,P构成的四边形为中心对称图形?若存在,求出点P的坐标;若不存在,请说明理由.21.(8分)(1)问题发现:如图1,在等腰直角三角形中,,将边绕点顺时针旋转90°得到线段,连接,则的面积为__________;(请用含的式子表示的面积;提示:过点作边上的高)(2)类比探究:如图2,在一般的中,,将边绕点顺时针旋转90°得到线段,连接.(1)中的结论是否成立,若成立,请说明理由.(3)拓展应用:如图3,在等腰三角形中,,将边绕点顺时针旋转90°得到线段,连接.试直接用含的式子表示的面积.(不写探究过程)22.(10分)如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.23.(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当时,;②当时,(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.24.(10分)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:1.25.(12分)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?26.小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆,箱长,拉杆的长度都相等,在上,在上,支杆,请根据以上信息,解决下列向题.求的长度(结果保留根号);求拉杆端点到水平滑杆的距离(结果保留根号).

参考答案一、选择题(每题4分,共48分)1、C【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.2、D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.3、B【解析】根据常见几何体的三视图解答即可得.【详解】球的三视图均为圆,故不符合题意;正方体的三视图均为正方形,故不符合题意;圆柱体的主视图与左视图为长方形,俯视图为圆,故符合题意;圆锥的主视图与左视图为等腰三角形,俯视图为圆,故符合题意,故选B.本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义和常见几何体的三视图.4、C【分析】过O作于H,得到,连接OB,由为内接等边三角形,得到,求得,根据垂径定理和三角形的中位线定理即可得到结论.【详解】解:过作于,,连接,为内接等边三角形,,,,,,,,,,故选:.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了三角形中位线定理.5、C【分析】根据平行线的性质,可得∠FAC=∠C=45°,然后根据三角形外角的性质,即可求出∠1.【详解】解:由三角板可知:∠F=30°,∠C=45°∵∴∠FAC=∠C=45°∴∠1=∠FAC+∠F=75°故选:C.此题考查的是平行线的性质和三角形外角的性质,掌握两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角之和是解决此题的关键.6、A【解析】由抛物线顶点坐标公式[]y=a(x﹣h)2+k中顶点坐标为(h,k)]进行求解.【详解】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选:A.考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为直线x=h.7、B【解析】根据圆的内接四边形对角互补,得出∠D的度数,再由轴对称的性质得出∠AEC的度数即可.【详解】解:∵四边形ABCD是圆的内接四边形,∴∠D=180°-∠ABC=180°-64°=116°,∵点D关于的对称点在边上,∴∠D=∠AEC=116°,故答案为B.本题考查了圆的内接四边形的性质及轴对称的性质,解题的关键是熟知圆的内接四边形对角互补及轴对称性质.8、D【分析】根据矩形的性质和平行四边形的性质判断出△AQE∽△AMG∽△ACB,得到,,再通过证明得到△PQE∽△KMG∽△NCB,利用面积比等于相似比的平方,得到S1、S2、S1的关系,进而可得到答案.【详解】解:∵矩形ABCD是由三个全等矩形拼成的,

∴AE=EG=GB=DF=FH=HC,∠AEQ=∠AGM=∠ABC=90°,AB∥CD,AD∥EF∥GH∥BC∴∠AQE=∠AMG=∠ACB,

∴△AQE∽△AMG∽△ACB,

∴,∵EG=DF=GB=FHAB∥CD,(已证)∴四边形DEGF,四边形FGBH是平行四边形,∴DE∥FG∥HB∴∠QPE=∠MKG=∠CNB,∴△PQE∽△KMG∽△NCB

∴,

∴,

∵S1+S1=10,∴S2=2.

故选:D.本题考查了矩形的性质、平行四边形的性质、三角形相似的性质的综合应用,能找到对应边的比是解答此题的关键.9、D【解析】∵反比例函数y=的图象经过点(5,-1),

∴k=5×(-1)=-5<0,

∴该函数图象在第二、四象限.

故选D.10、A【分析】本题利用弧的度数等于所对的圆周角度数的2倍求解优弧度数,继而求解劣弧度数,最后根据弧的度数等于圆心角的度数求解本题.【详解】如下图所示:∵∠BDC=120°,∴优弧的度数为240°,∴劣弧度数为120°.∵劣弧所对的圆心角为∠BOC,∴∠BOC=120°.故选:A.本题考查圆的相关概念,解题关键在于清楚圆心角、圆周角、弧各个概念之间的关系.11、B【分析】根据方程的系数结合根的判别式,可得出△=−7<0,进而可得出该方程没有实数根.【详解】a=2,b=-3,c=2,∵△=b2−4ac=9−4×2×2=−7<0,∴关于x的一元二次方程没有实数根.故选:B.本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.12、C【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、a=0,故本选项错误;B、有两个未知数,故本选项错误;C、本选项正确;D、含有分式,不是整式方程,故本选项错误;故选:C.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.二、填空题(每题4分,共24分)13、.【详解】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.本题考查概率公式,掌握图形特点是解题关键,难度不大.14、2.【解析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【详解】∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣2),∴当y=0时,0=(x﹣3)(x﹣2),解得:x2=3,x2=2.∵3﹣2=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.故答案为:2.本题考查了抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.15、1

【分析】根据口袋中装有白球3个,黑球5个,黄球n个,故球的总个数为3+5+n,再根据黄球的概率公式列式解答即可.【详解】∵口袋中装有白球3个,黑球5个,黄球n个,∴球的总个数为3+5+n,∵从中随机摸出一个球,摸到白色球的概率为,即,解得:n=1,故答案为:1.本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、【分析】根据提公因式法解一元二次方程直接求解即可.【详解】提公因式得解得.故答案为.本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是关键.17、【解析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=,OM=OB•COS10°=2.∴B的坐标是(2,).∵B在反比例函数位于第一象限的图象上,∴k=2×=.18、.【分析】如图,过点C作CP⊥BE于P,可得CG为PC的最小值,由ABCDEF是正六边形,根据多边形内角和公式可得∠GBC=60°,进而可得∠BCG=30°,根据含30°角的直角三角形的性质及勾股定理即可求出PC的长.【详解】如图,过点C作CG⊥BE于G,∵点P为对角线BE上一动点,∴点P与点G重合时,PC最短,即CG为PC的最小值,∵ABCDEF是正六边形,∴∠ABC==120°,∴∠GBC=60°,∴∠BCG=30°,∵BC=6,∴BG=BC=3,∴CG===.故答案为:本题考查正六边形的性质、含30°角的直角三角形的性质及勾股定理,根据垂线段最短得出点P的位置,并熟练掌握多边形内角和公式是解题关键.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)由是的直径可得,然后利用直角三角形的性质和角的等量代换可得,进而可得结论;(2)易证,于是可利用相似三角形的性质求出AB的长,进而可得AD的长,过作于,则,于是△OHC∽△ADC,然后再利用相似三角形的性质可求得OH的长,问题即得解决.【详解】(1)证明:∵是的直径,∴,∴,∵,∴,即,∴是的切线;(2)解:∵,,∴,∴,∴,解得:,∴,过作于,∵,∴,∴△OHC∽△ADC,∴,∴,∴点到的距离是.本题考查了圆周角定理的推论、圆的切线的判定、相似三角形的判定和性质以及点到直线的距离等知识,属于常考题型,熟练掌握相似三角形的判定和性质是解本题的关键.20、(1)点B的坐标为(3,1);(2)y=x2﹣x﹣2;(3)点A1在抛物线上;理由见解析;(4)存在,点P(﹣2,1).【分析】(1)首先过点B作BD⊥x轴,垂足为D,通过证明△BDC≌△COA即可得BD=OC=1,CD=OA=2,从而得知B坐标;(2)利用待定系数法,将B坐标代入即可求得;(3)画出旋转后的图形,过点作x轴的垂线,构造全等三角形,求出的坐标代入抛物线解析式即可进行判断;(4)由抛物线的解析式先设出P的坐标,再根据中心对称的性质与线段中点的公式列出方程求解即可.【详解】(1)如图1,过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,在△BDC和△COA中:∵∠BDC=∠COA,∠BCD=∠CAO,CB=AC,∴△BDC≌△COA(AAS),∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)旋转后如图1所示,过点A1作A1M⊥x轴,∵把△ABC绕着点C逆时针旋转90°,∴∠ABC=∠A1BC=90°,∴A1,B,C共线,在三角形BDC和三角形A1CM中:∵∠BDC=∠A1MC=90°,∠BCD=∠A1CM,A1C=BC,∴△BDC≌△A1CM∴CM=CD=3﹣1=2,A1M=BD=1,∴OM=1,∴点A1(﹣1,﹣1),把点x=﹣1代入y=x2﹣x﹣2,y=﹣1,∴点A1在抛物线上.(4)设点P(t,t2﹣t﹣2),点A(0,2),点C(1,0),点B(3,1),若点P和点C对应,由中心对称的性质和线段中点公式可得:,,无解,若点P和点A对应,由中心对称的性质和线段中点公式可得:,,无解,若点P和点B对应,由中心对称的性质和线段中点公式可得:,,解得:t=﹣2,t2﹣t﹣2=1所以:存在,点P(﹣2,1).本题主要考查了抛物线与几何图形的综合运用,熟练掌握相关概念是解题关键.21、(1);(2)成立,理由见解析;(3)【分析】(1)如图1,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a进而由三角形的面积公式得出结论;

(2)如图2,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有.DE=BC=a进而由三角形的面积公式得出结论;

(3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【详解】解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,

∴∠BED=∠ACB=90°,

由旋转知,AB=BD,∠ABD=90°,

∴∠ABC+∠DBE=90°,

∵∠A+∠ABC=90°,

∴∠A=∠DBE,

在△ABC和△BDE中,

∴△ABC≌△BDE(AAS)

∴BC=DE=a.

∵S△BCD=BC⋅DE=

故答案为(2)(1)中结论仍然成立,理由:如图,过点作边上的高,在中,∵,由旋转可知:,∴,∴,又∵,∴,∴,(3).如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,

∴∠AFB=∠E=90°,BF=BC=a.

∴∠FAB+∠ABF=90°

∵∠ABD=90°,

∴∠ABF+∠DBE=90°,

∴∠FAB=∠EBD

∵线段BD是由线段AB旋转得到的,

∴AB=BD

在△AFB和△BED中,

∴△AFB≌△BED(AAS),

∴BF=DE=a.

∵S△BCD=BC⋅DE=⋅a⋅a=.

∴△BCD的面积为.此题是几何变换综合题,主要考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,判断出△ABC≌△BDE是解本题的关键.22、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)将点代入,求出,将点代入,即可求函数解析式;(2)如图,过作轴,交于,求出的解析式,设,表示点坐标,表示长度,利用,建立二次函数模型,利用二次函数的性质求最值即可,(3)可证明△MAD是等腰直角三角形,由△QMN与△MAD相似,则△QMN是等腰直角三角形,设①当MQ⊥QN时,N(3,0);②当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,由(AAS),建立方程求解;③当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过M点的垂线分别交于点S、R;可证△MQR≌△QNS(AAS),建立方程求解;④当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;可证△MNR≌△NQS(AAS),建立方程求解.【详解】解:(1)将点代入,∴,将点代入,解得:,∴函数解析式为;(2)如图,过作轴,交于,设为,因为:所以:,解得:,所以直线AB为:,设,则,所以:,所以:,当,,此时:.(3)∵,∴,∴△MAD是等腰直角三角形.∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设①如图1,当MQ⊥QN时,此时与重合,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴于,过点M作MS⊥RN交于点S.∵QN=MN,∠QNM=90°,∴(AAS),∴,∴,,∴,∴;③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,,∴,∴t=5,(舍去负根)∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴,∴.,∴,∴;综上所述:或或N(5,6)或.本题考查二次函数的综合;熟练掌握二次函数的图象及性质,数形结合解题是关键.23、(1)①,②.(2)无变化;理由参见解析.(3),.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论