版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市榕城区空港经济区2026届数学九上期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.等弧所对的圆心角相等B.三角形的外心到这个三角形的三边距离相等C.经过三点可以作一个圆D.相等的圆心角所对的弧相等2.下列方程式属于一元二次方程的是()A. B. C. D.3.已知一元二次方程,,则的值为()A. B. C. D.4.下列方程是一元二次方程的是()A.3x2+=0 B.(3x-1)(3x+1)=3C.(x-3)(x-2)=x2 D.2x-3y+1=05.等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数 C.反比例函数 D.二次函数6.sin30°等于()A. B. C. D.7.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.8.如图,已知正方形ABCD,将对角线BD绕着点B逆时针旋转,使点D落在CB的延长线上的D′点处,那么sin∠AD′B的值是()A. B. C. D.9.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是()A.AC∥OD B.C.△ODE∽△ADO D.10.一元二次方程x2﹣3x=0的两个根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣3二、填空题(每小题3分,共24分)11.因式分解:_______;12.使代数式有意义的实数x的取值范围为_____.13.如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为_____(结果用含正整数的代数式表示)14.在中,,,,则内切圆的半径是__________.15.若,且,则=______.16.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.17.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.18.如图是二次函数y=ax2﹣bx+c的图象,由图象可知,不等式ax2﹣bx+c<0的解集是_______.三、解答题(共66分)19.(10分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?20.(6分)如图,点是反比例函数上一点,过点作轴于点,点为轴上一点,连接.(1)求反比例函数的解析式;(2)求的面积.21.(6分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?22.(8分)用配方法解方程:x2﹣6x=1.23.(8分)今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.24.(8分)某旅馆一共有客房30间,在国庆期间,老板通过观察记录发现,当所有房间都有旅客入住时,每间客房净赚600元,客房价格每提高50元,则会少租出去1个房间.同时没有旅客入住的房间,需要花费50元来进行卫生打理.(1)求出每天利润w的最大值,并求出利润最大时,有多少间客房入住了旅客.(2)若老板希望每天的利润不低于19500元,且租出去的客房数量最少,求出此时每间客房的利润.25.(10分)已知,直线与抛物线相交于、两点,且的坐标是(1)求,的值;(2)抛物线的表达式及其对称轴和顶点坐标.26.(10分)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,sinB=,求DE的长.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:A.等弧所对的圆心角相等,所以A选项正确;B.三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C.经过不共线的三点可以作一个圆,所以C选项错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选C.考点:1.确定圆的条件;2.圆心角、弧、弦的关系;3.三角形的外接圆与外心.2、D【解析】根据一元二次方程的定义逐项进行判断即可.【详解】A、是一元三次方程,故不符合题意;B、是分式方程,故不符合题意;C、是二元二次方程,故不符合题意;D、是一元二次方程,符合题意.故选:D.本题考查一元二次方程的定义,熟练掌握定义是关键.3、B【分析】根据题干可以明确得到p,q是方程的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程的两根,∴p+q=,故选B.本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.4、B【分析】根据一元二次方程的定义,二次项系数不能等于0,未知数最高次数是2的整式方程,即可得到答案.【详解】解:A、不是整式方程,故本项错误;B、化简得到,是一元二次方程,故本项正确;C、化简得到,是一元一次方程,故本项错误;D、是二元一次方程,故本项错误;故选择:B.本题考查了一元二次方程的定义,熟记定义是解题的关键.5、B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.6、B【解析】分析:根据特殊角的三角函数值来解答本题.详解:sin30°=.故选B.点睛:本题考查了特殊角的三角函数值,特殊角三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.7、D【分析】根据三角形全等的判定定理逐项判断即可.【详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.本题考查了三角形全等的判定定理,熟记各定理是解题关键.8、A【分析】设,根据正方形的性质可得,再根据旋转的性质可得的长,然后由勾股定理可得的长,从而根据正弦的定义即可得.【详解】设由正方形的性质得由旋转的性质得在中,则故选:A.本题考查了正方形的性质、旋转的性质、正弦的定义等知识点,根据旋转的性质得出的长是解题关键.9、A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;
C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;
D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【详解】解:解:A.∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴A正确.
B.如图,过点E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于点D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴B错误.
C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DOE≠∠DAO,
∴不能证明△ODE和△ADO相似,
∴C错误;D.∵AD平分∠CAB交于点D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半径OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D错误.故选A.本题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练.10、B【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣1x=0,x(x﹣1)=0,x=0或x﹣1=0,x1=0,x2=1.故选:B.本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).二、填空题(每小题3分,共24分)11、(a-b)(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),
故答案为:(a-b)(a-b+1)此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.12、【分析】根据二次根式有意义的条件得出即可求解.【详解】若代数式有意义,则,解得:,即实数x的取值范围为.故填:本题考查二次根式有意义的条件,熟练掌握二次根式有意义即根号内的式子要大于等于零是关键.13、【解析】过点分别作轴,轴,轴,轴,轴,……垂足分别为,根据题意求出,得到图中所有的直角三角形都相似,两条直角边的比都是可以求出点的横坐标为:,再依次求出……即可求解.【详解】解:过点分别作轴,轴,轴,轴,轴,……垂足分别为点在直线上,点的横坐标为,点的纵坐标为,即:图中所有的直角三角形都相似,两条直角边的比都是点的横坐标为:,点的横坐标为:点C3的横坐标为:点的横坐标为:点的横坐标为:故答案为:本题考查的是规律,熟练掌握相似三角形的性质是解题的关键.14、1【分析】先根据勾股定理求出斜边AB的长,然后根据直角三角形内切圆的半径公式:(其中a、b为直角三角形的直角边、c为直角三角形的斜边)计算即可.【详解】解:在中,,,,根据勾股定理可得:∴内切圆的半径是故答案为:1.此题考查的是求直角三角形内切圆的半径,掌握直角三角形内切圆的半径公式:(其中a、b为直角三角形的直角边、c为直角三角形的斜边)是解决此题的关键.15、12【分析】设,则a=2k,b=3k,c=4k,由求出k值,即可求出c的值.【详解】解:设,则a=2k,b=3k,c=4k,∵a+b-c=3,∴2k+3k-4k=3,∴k=3,∴c=4k=12.故答案为12.此题主要考查了比例的性质,利用等比性质是解题关键.16、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17、点B或点E或线段BE的中点.【分析】由旋转的性质分情况讨论可求解;【详解】解:∵正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,∴若点A与点E是对称点,则点B是旋转中心是点B;若点A与点D是对称点,则点B是旋转中心是BE的中点;若点A与点E是对称点,则点B是旋转中心是点E;故答案为:点B或点E或线段BE的中点.本题考查了旋转的性质,正方形的性质,利用分类讨论是本题的关键.18、x<-1或x>1【分析】根据二次函数的对称性求出与x轴的另一个交点坐标,然后根据函数图象写出x轴上方部分的x的取值范围即可.【详解】解:由对称性得:抛物线与x轴的另一个交点为(-1,0),
∴不等式ax2﹣bx+c<0的解集是:x<-1或x>1,
故答案为:x<-1或x>1.本题考查了二次函数与不等式组,二次函数的性质,此类题目,利用数形结合的思想求解是解题的关键.三、解答题(共66分)19、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).∵(米)∴水池的直径至少要6米.此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.20、(1);(2)的面积为1.【分析】(1)把点代入反比例函数即可求出比例函数的解析式;(2)利用A,B点坐标进而得出AC,BC的长,然后根据三角形的面积公式求解即可.【详解】(1)点是反比例函数上一点,,故反比例函数的解析式为:;(2)点,点轴,,故的面积为:.此题主要考查了待定系数法求反比例函数解析式,坐标与图形的性质,三角形的面积公式,熟练掌握待定系数法是解题关键.21、(1)28cm;(2)3s;(3)7s【分析】(1)将t=4代入公式计算即可;(2)第一次相遇即是共走半圆的长度,据此列方程,求解即可;(3)第二次相遇应是走了三个半圆的长度,得到,解方程即可得到答案.【详解】解:(1)当t=4s时,cm.答:甲运动4s后的路程是.(2)由图可知,甲乙第一次相遇时走过的路程为半圆,甲走过的路程为,乙走过的路程为,则.解得或(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s.(3)由图可知,甲乙第二次相遇时走过的路程为三个半圆,则解得或(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s.此题考查一元二次方程的实际应用,正确理解题意是解题的关键.22、x1=3﹣,x2=3+.【分析】根据配方法,可得方程的解.【详解】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x1=3﹣,x2=3+.此题主要考查一元二次方程的求解,解题的关键是熟知配方法解方程.23、(1)详见解析(2)12【解析】试题分析:(1)根据列表法与画树状图的方法画出即可。(2)根据概率公式列式计算即可得解。解:(1)画树状图表示如下:抽奖所有可能出现的结果有12种。(2)∵由(1)知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种,∴抽奖人员的获奖概率为P=624、(1)21600元,8或9间;(2)15间,1元【分析】(1)设每个房间价格提高50x元,可列利润w=(30﹣x)(600+50x)﹣50x,将此函数配方为顶点式,即可得到答案;(2)将(1)中关系式﹣50x2+850x+18000=19500,求出x的值,由租出去的客房数量最少即(30﹣x)最小,得到x取最大值15,再代入利润关系式求得每间客房的利润即可.【详解】解:(1)设每个房间价格提高50x元,则租出去的房间数量为(30﹣x)间,由题意得,利润w=(30﹣x)(600+50x)﹣50x=﹣50x2+850x+18000=﹣50(x﹣8.5)2+21612.5因为x为正整数所以当x=8或9时,利润w有最大值,wmax=21600;(2)当w=19500时,﹣50x2+850x+18000=19500解得x1=2,x2=15,∵要租出去的房间最少∴x=15,此时每个房间的利润为600+50×15=1.此题考查二次函数的实际应用,正确理解题意列得函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 指向核心素养的小学数学多元化评价策略研究
- 解析卷-人教版八年级上册物理光现象《光的直线传播》综合测评试卷(解析版含答案)
- 考点解析-人教版八年级上册物理《物态变化》同步测试练习题(含答案解析)
- 2025年建筑工地安全监理合同协议
- 109.教育预算编制精细化案例分析考核试卷
- 102新能源汽车电池管理系统维修技能考核试卷
- 商品预售合同(标准版)
- 难点解析人教版八年级物理上册第5章透镜及其应用专项训练练习题(含答案解析)
- 2025年电大电子商务专业《电子商务安全与支付》实战案例分析试题及答案
- 山东滨州市2025年注册环保工程师考试(大气污染防治专业案例)全真模拟题库及答案
- 北京大学《药物毒理学》10神经和神经行为毒理学-药物毒理学
- 《组织的力量 增长的隐性曲线》读书笔记思维导图PPT模板下载
- 第六章金属合金的塑性变形
- YY/T 0299-2022医用超声耦合剂
- 一级建造师资格考试题库大全免费答案
- 护士注册健康体检表下载【可直接打印版本】
- 浙江省建筑设备安装工程提高质量的若干意见(安装300条)新版
- 七年级(上 )生物实验通知单
- 中国瓷器发展史(课堂PPT)
- 系统部署报告(共6页)
- cvc和picc导管的维护ppt课件
评论
0/150
提交评论