成都市高新区草池初中2026届数学八上期末学业质量监测模拟试题含解析_第1页
成都市高新区草池初中2026届数学八上期末学业质量监测模拟试题含解析_第2页
成都市高新区草池初中2026届数学八上期末学业质量监测模拟试题含解析_第3页
成都市高新区草池初中2026届数学八上期末学业质量监测模拟试题含解析_第4页
成都市高新区草池初中2026届数学八上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成都市高新区草池初中2026届数学八上期末学业质量监测模拟试题监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的的个数有()A.1个 B.2个 C.3个 D.4个2.若4x2+(k﹣1)x+25是一个完全平方式,则常数k的值为()A.11 B.21 C.﹣19 D.21或﹣193.在下面数据中,无理数是()A. B. C. D.0.585858…4.如图,在中,,是高,,,则的长为()A. B. C. D.5.如图,D是线段AC、AB的垂直平分线的交点,若,,则的大小是A. B. C. D.6.下面4组数值中,二元一次方程2x+y=10的解是()A. B. C. D.7.近期,受不良气象条件影响,我市接连出现重污染天气,细颗粒物(PM2.5)平均浓度持续上升,严重威胁人民群众的身体健康,PM2.5是直径小于或等于2.5微米(1微米相当于1毫米的千分之一)的颗粒物,可直接进入肺部把2.5微米用科学记数法表示为()A.2.5×10﹣6米 B.25×10﹣5米C.0.25×10﹣4米 D.2.5×10﹣4米8.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是()A.方 B.雷 C.罗 D.安9.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48° B.54° C.74° D.78°10.若分式方程无解,则m的值为()A.﹣1 B.0 C.1 D.311.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.()A.4个 B.3个 C.2个 D.1个12.如图,在等腰三角形纸片中,,,折叠该纸片,使点落在点处,折痕为,则的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.14.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2﹣10…y…m2n…则m+n的值为_____.15.我国首艘国产航母山东舰于2019年12月17日下午4时交付海军,山东舰的排水量达到65000吨,请将65000精确到万位,并用科学记数法表示______.16.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.17.若分式的值为0,则的值为______.18.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x千米/时,根据题意列出方程_____.三、解答题(共78分)19.(8分)如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.20.(8分)如图,在平面直角坐标系中,点A、B分别在笫一、二象限,BD⊥y轴于点D,连接AD、OA、OB,且OA=OB(1)如图1,若∠AOB=90°,∠ADO=135°,Aa,b,探究a、b(2)如图2,若∠AOB=60°,∠ADO=120°,探究线段OD、AD之间的数量关系,并证明你的结论.21.(8分)我县电力部门实行两种电费计价方法,方法一是使用峰谷电:每天8:00至22:00用电每千瓦时收费0.56元(峰电价);22:00到次日8:00,每千瓦时收费0.28元(谷电价),方法二是不使用峰谷电:每千瓦时均收费0.53元(1)如果小林家使用峰谷电后,上月付费95.2元,比不使用峰谷电少付费10.8元,则上月使用峰电和谷电各是多少千瓦时?(2)如果小林家上月总用电量140千瓦时,那么当峰电用量为多少时,使用峰谷电比较合算.22.(10分)(1)计算:(2x﹣3)(﹣2x﹣3)(2)计算:102223.(10分)在△ABC中,∠BAC=41°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=131°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为1,记△ABC得面积为1.求证:;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)24.(10分)如图,已知点B,C,F,E在同一直线上,∠1=∠2,BF=CE,AB∥DE.求证:△ABC≌△DEF.25.(12分)如图,直线与轴、轴分别相交于点、,与直线相交于点.(1)求点坐标;(2)如果在轴上存在一点,使是以为底边的等腰三角形,求点坐标;(3)在直线上是否存在点,使的面积等于6?若存在,请求出点的坐标,若不存在,请说明理由.26.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据三角形全等的判定方法可判断①④正确,②③错误.【详解】解:①两边及其中一边上的中线对应相等的两个三角形全等,所以①正确;②两边及其中一边上的高对应相等的两个三角形不一定全等,如图:△ABC和△ACD,的边AC=AC,BC=CD,高AE=AE,但△ABC和△ACD不全等,故此选项错误;③两边及一角对应相等的两个三角形不一定全等,错误;④有两角及其中一角的角平分线对应相等的两个三角形全等,正确.所以①④两个命题正确.故选B.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.2、D【解析】∵4x2+(k﹣1)x+25是一个完全平方式,∴k-1=±2×2×5,解之得k=21或k=-19.故选D.3、A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A.是无理数,故本选项符合题意;B.,是整数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.0.585858…是循环小数,属于有理数,故本选项不合题意.故选:A.【点睛】此题考查无理数的定义,解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4、B【分析】根据同角的余角相等可得∠BCD=∠A=30°,然后根据30°所对的直角边是斜边的一半即可依次求出BC和AB.【详解】解:∵,是高∴∠ACB=∠ADC=90°∴∠BCD+∠ACD=∠A+∠ACD=90°∴∠BCD=∠A=30°在Rt△BCD中,BC=2BD=4cm在Rt△ABC中,AB=2BC=8cm故选B.【点睛】此题考查的是余角的性质和直角三角形的性质,掌握同角的余角相等和30°所对的直角边是斜边的一半是解决此题的关键.5、A【解析】利用线段的垂直平分线的性质可以得到相等的线段,进而可以得到相等的角,然后利用题目中的已知条件求解即可.【详解】解:是线段AC、AB的垂直平分线的交点,

,,

,,

故选A.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是根据线段的垂直平分线得到相等的线段.6、D【分析】把各项中x与y的值代入方程检验即可.【详解】A.把代入方程得:左边=﹣4+6=2,右边=1.∵左边≠右边,∴不是方程的解;B.把代入方程得:左边=4+4=8,右边=1.∵左边≠右边,∴不是方程的解;C.把代入方程得:左边=8+3=11,右边=1.∵左边≠右边,∴不是方程的解;D.把代入方程得:左边=12﹣2=1,右边=1.∵左边=右边,∴是方程的解.故选:D.【点睛】此题考查了解二元一次方程的解,熟练掌握运算法则是解本题的关键.7、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;【详解】∵1微米=0.000001米=1×米,∴2.5微米=2.5×1×米=2.5×米;故选:A.【点睛】本题主要考查了科学记数法的表示,掌握科学记数法是解题的关键.8、C【解析】根据轴对称图形的概念观察图形判断即可.【详解】由图可知,是轴对称图形的只有“罗”.故答案选:C.【点睛】本题考查了轴对称图形的概念,解题的关键是熟练的掌握轴对称图形的概念.9、B【解析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.10、A【分析】

【详解】两边同乘以(x+3)得:x+2=m,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴m=-1,故选A.11、B【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【详解】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠CAF.综上可知:②③④正确.故选:B.【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.12、B【分析】根据折叠的性质得到,求得,根据等腰三角形的性质得到,于是得到结论.【详解】解:∵,,∴,∴.由题意得:,∴∴.故选B.【点睛】该题主要考查了翻折变换的性质、等腰三角形的性质、三角形的内角和定理及其应用问题;解题的关键是牢固掌握翻折变换的性质、等腰三角形的性质、三角形的内角和定理等知识点.二、填空题(每题4分,共24分)13、130°【解析】试题分析:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为130°.考点:全等三角形的性质14、1.【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=1.故答案为:1.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.15、【分析】首先把65000精确到万位,然后根据:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,判断出用科学记数法表示是多少即可.【详解】65000≈70000,

70000=7×1.

故答案为:7×1.【点睛】本题主要考查了用科学记数法和近似数.一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.16、x=1【解析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】∵一次函数y=ax+b的图象与x轴相交于点(1,0),∴关于x的方程ax+b=0的解是x=1,故答案为x=1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.17、1.【分析】根据分式的值为零的条件即可得出.【详解】解:∵分式的值为0,

∴x-1=0且x≠0,

∴x=1.

故答案为1.【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.18、.【分析】设汽车的平均速度为x千米/时,则动车的平均速度为2.5x,根据题意可得:由乘动车到南京比坐汽车就要节省1.2小时,列方程即可.【详解】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,.故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.三、解答题(共78分)19、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.【分析】(1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得:∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出的等腰三角形有:△AEF、△OEB、△OFC、△OBC、△ABC;

已知了△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.

(2)由(1)的证明过程可知:在证△OEB、△OFC是等腰三角形的过程中,与AB=AC的条件没有关系,故这两个等腰三角形还成立.所以(1)中得出的EF=BE+FC的结论仍成立.

(3)思路与(2)相同,只不过结果变成了EF=BE-FC.【详解】解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;

EF、BE、FC的关系是EF=BE+FC.理由如下:∵AB=AC,

∴∠ACB=∠ABC,△ABC是等腰三角形;

∵BO、CO分别平分∠ABC和∠ACB,

∴∠ABO=∠OBC=∠ABC,∠OCB=∠ACO=∠ACB,

∵EF∥BC,

∴∠EOB=∠OBC,∠FOC=∠OCB,

∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,

∴△EOB、△OBC、△FOC都是等腰三角形,

∵EF∥BC,

∴∠AEF=∠ABC,∠AFE=∠ACB,

∴∠AEF=∠AFE,

∴△AEF是等腰三角形,

∵OB、OC平分∠ABC、∠ACB,

∴∠ABO=∠OBC,∠ACO=∠OCB;

∵EF∥BC,

∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;

即EO=EB,FO=FC;

∴EF=EO+OF=BE+CF;

(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.

∵OB、OC平分∠ABC、∠ACB,

∴∠ABO=∠OBC,∠ACO=∠OCB;

∵EF∥BC,

∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;

即EO=EB,FO=FC;

∴EF=EO+OF=BE+CF;

(3)△EOB和△FOC仍是等腰三角形,EF=BE-FC.理由如下:

同(1)可证得△EOB是等腰三角形;

∵EO∥BC,

∴∠FOC=∠OCG;

∵OC平分∠ACG,

∴∠ACO=∠FOC=∠OCG,

∴FO=FC,故△FOC是等腰三角形;

∴EF=EO-FO=BE-FC.【点睛】本题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.进行线段的等量代换是正确解答本题的关键.20、(1)b=2a,证明见解析;(2)AD=1【解析】(1)过点A做AE⊥y轴于E,利用AAS定理证明ΔODB≅ΔAOE,从而得到OD=AE,BD=OE,然后利用等腰直角三角形的判定与性质得到OD=DE=AE,即OE=2AE,从而求出a,b的关系;(2)在y轴上取一点E,使得DE=DA,根据含60°角的等腰三角形是等边三角形判定ΔADE,ΔAOB是等边三角形,然后利用SAS定理证明ΔBEA≅ΔODA,从而得到OD=BE,∠BEA=∠ODA=120°,然后利用含30°的直角三角形的性质求证AD=1【详解】解:(1)如图1,过点A做AE⊥y轴于E,则∠AEO=∠AOB=90°∴∠OAE+∠AOE=∠BOD+∠AOE∴∠OAE=∠BOD∵∠BDO=∠AEO=90°,OA=OB∴ΔODB≅ΔAOE(AAS)∴OD=AE,BD=OE∵∠ADE=45°,∠AED=90°∴∠ADE=∠EAD=45°∴OD=DE=AE∴OE=2AE∴b=2a.(2)如图2,在y轴上取一点E,使得DE=DA∵∠ADO=120°∴∠ADE=60°∴ΔADE是等边三角形∴AD=AE∠DAE=60°∵∠AOB=60°OA=OB∴ΔAOB是等边三角形∴∠BAO=60°OA=OB∴∠EAB=∠DAO∴ΔBEA≅ΔODA(SAS)∴OD=BE,∠BEA=∠ODA=120°∴∠BED=60°∵∠BDE=90°∴∠EBD=30°∴ED=∴AD=1【点睛】本题考查等边三角形的性质及其判定,全等三角形的判定和性质,含30°的直角三角形的性质,掌握相关性质定理,正确添加辅助线进行证明是解题关键.21、(1)上月使用“峰电”和“谷电”各140千瓦时、60千瓦时;(2)当“峰电“用量不超过1千瓦时,使用“峰谷电”比较合算.【分析】(1)设该家庭上月使用峰电x千瓦时,谷电y千瓦时,根据“电费95.2元”,比不使用“峰谷”的电费少付费10.8元作为相等关系列方程组,求解即可;(2)设“峰电“用量为z千瓦时时,根据不等式关系:使用“峰谷电”的电费≤不使用“峰谷电”的电费,列出不等式计算即可求解.【详解】解:(1)设该家庭上月使用“峰电”x千瓦时,“谷电”y千瓦时,则总用电量为(x+y)千瓦时.

由题意得,解得,答:上月使用“峰电”和“谷电”各140千瓦时、60千瓦时;(2)设当“峰电“用量为z千瓦时时,使用“峰谷电”比较合算,依题意有

0.56z+0.28(140-z)≤140×0.53,

解得z≤1.

答:当“峰电“用量不超过1千瓦时,使用“峰谷电”比较合算.【点睛】本题主要考查了二元一次方程组的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量(不等)关系,列出方程组,再求解.22、(1)9﹣4x2;(2)1【分析】(1)根据平方差公式计算即可;(2)根据完全平方公式计算即可.【详解】解:(1)(2x﹣3)(﹣2x﹣3)=(-3)2﹣(2x)2=9﹣4x2;(2)1022=(100+2)2=1002+2×100×2+22=10000+400+4=1.【点睛】本题主要考查了平方差公式和完全平方公式,熟记公式是解答本题的关键.23、(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=131°-∠ACM;

(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;

(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=41°,∴∠AMC=180°﹣41°﹣∠ACM=131°﹣∠ACM.∵∠NCM=131°,∴∠ACN=131°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC•NE,S2AB•CD,∴;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.24、证明见解析.【解析】首先根据平行线的性质可得∠E=∠B,进而求得BC=EF,再加上∠1=∠2,可利用AAS证明△ABC≌△DEF.【详解】证明:∵BF=CE,∴BF-FC=CE-CF,即BC=EF,∵AB∥DE,∴∠E=∠B,在△ABC和△DEF中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论