北京育英中学九年级上册压轴题数学模拟试卷含详细答案_第1页
北京育英中学九年级上册压轴题数学模拟试卷含详细答案_第2页
北京育英中学九年级上册压轴题数学模拟试卷含详细答案_第3页
北京育英中学九年级上册压轴题数学模拟试卷含详细答案_第4页
北京育英中学九年级上册压轴题数学模拟试卷含详细答案_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京育英中学九年级上册压轴题数学模拟试卷含详细答案一、压轴题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.定义:对于已知的两个函数,任取自变量的一个值,当时,它们对应的函数值相等;当时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数,它的相关函数为.(1)已知点在一次函数的相关函数的图像上,求的值;(2)已知二次函数.①当点在这个函数的相关函数的图像上时,求的值;②当时,求函数的相关函数的最大值和最小值.(3)在平面直角坐标系中,点、的坐标分别为、,连结.直接写出线段与二次函数的相关函数的图像有两个公共点时的取值范围.3.如图1,平面直角坐标系中,等腰的底边在轴上,,顶点在的正半轴上,,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点从点出发,以相同的速度沿向左运动,到达点停止.已知点、同时出发,以为边作正方形,使正方形和在的同侧.设运动的时间为秒().(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动.请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由.4.将一个直角三角形纸片放置在平面直角坐标系中,点,点,点B在第一象限,,,点P在边上(点P不与点重合).(1)如图①,当时,求点P的坐标;(2)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且,点O的对应点为,设.①如图②,若折叠后与重叠部分为四边形,分别与边相交于点,试用含有t的式子表示的长,并直接写出t的取值范围;②若折叠后与重叠部分的面积为S,当时,求S的取值范围(直接写出结果即可).5.定义:对于二次函数,我们称函数为它的分函数(其中为常数).例如:的分函数为.设二次函数的分函数的图象为.(1)直接写出图象对应的函数关系式.(2)当时,求图象在范围内的最高点和最低点的坐标.(3)当图象在的部分与轴只有一个交点时,求的取值范围.(4)当,图象到轴的距离为个单位的点有三个时,直接写出的取值范围.6.二次函数的图象交y轴于点A,顶点为P,直线PA与x轴交于点B.(1)当m=1时,求顶点P的坐标;(2)若点Q(a,b)在二次函数的图象上,且,试求a的取值范围;(3)在第一象限内,以AB为边作正方形ABCD.①求点D的坐标(用含m的代数式表示);②若该二次函数的图象与正方形ABCD的边CD有公共点,请直接写出符合条件的整数m的值.7.在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.(1)求抛物线的解析式;(2)点P为直线CD上的一个动点,连接BC;①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.8.如图,直线l:y=﹣3x+3与x轴,y轴分别相交于A、B两点,抛物线y=﹣x2+2x+b经过点B.(1)该抛物线的函数解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M'.①写出点M'的坐标;②将直线l绕点A按顺时针方向旋转得到直线l',当直线l′与直线AM'重合时停止旋转,在旋转过程中,直线l'与线段BM'交于点C,设点B,M'到直线l'的距离分别为d1,d2,当d1+d2最大时,求直线l'旋转的角度(即∠BAC的度数).9.如图,在平面直角坐标系中,已知抛物线与直线AB相交于A,B两点,其中,.(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线,平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.10.已知抛物线y=ax2+bx+c(a>0),顶点D在y轴上,与x轴的一个交点的横坐标为.(1)求a、c满足的关系式;(2)若直线y=kx-2a与抛物线交于A、B两点(点A在点B左侧),以AB为直径的圆恒过点D.①求抛物线的解析式;②设直线y=kx-2a与y轴交于点M、直线l1:y=px+q过点B,且与抛物线只有一个公共点,过点D作x轴的平行线l2,l1与l2交于点N.分别记、的面积为S1,S2,求.11.如图,在矩形ABCD中,AB=6,BC=8,点E,F分别在边BC,AB上,AF=BE=2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN=x,EM=y,求y关于x的函数表达式,并写出自变量x的取值范围.(3)连结MN,当MN与△DEF的一边平行时,求CN的长.12.如图,已知点A、C在双曲线上,点B、D在双曲线上,AD//BC//y轴.(I)当m=6,n=-3,AD=3时,求此时点A的坐标;(II)若点A、C关于原点O对称,试判断四边形ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn的最小值.13.小聪与小明在一张矩形台球桌ABCD边打台球,该球桌长AB=4m,宽AD=2m,点O、E分别为AB、CD的中点,以AB、OE所在的直线建立平面直角坐标系。(1)如图1,M为BC上一点;①小明要将一球从点M击出射向边AB,经反弹落入D袋,请你画出AB上的反弹点F的位置;②若将一球从点M(2,12)击出射向边AB上点F(0.5,0),问该球反弹后能否撞到位于(-0.5,0.8)位置的另一球?请说明理由(2)如图2,在球桌上放置两个挡板(厚度不计)挡板MQ的端点M在AD中点上且MQ⊥AD,MQ=2m,挡板EH的端点H在边BC上滑动,且挡板EH经过DC的中点E;①小聪把球从B点击出,后经挡板EH反弹后落入D袋,当H是BC中点时,试证明:DN=BN;②如图3,小明把球从B点击出,依次经挡板EH和挡板MQ反弹一次后落入D袋,已知∠EHC=75°,请你直接写出球的运动路径BN+NP+PD的长。14.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=且经过A、C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.15.如图,在直角中,,,作的平分线交于点,在上取点,以点为圆心经过、两点画圆分别与、相交于点、(异于点).(1)求证:是的切线;(2)若点恰好是的中点,求的长;(3)若的长为.①求的半径长;②点关于轴对称后得到点,求与的面积之比.16.如图,在平面直角坐标系中,以原点O为中心的正方形ABCD的边长为4m,我们把轴时正方形ABCD的位置作为起始位置,若将它绕点O顺时针旋转任意角度时,它能够与反比例函数的图象相交于点E,F,G,H,则曲线段EF,HG与线段EH,GF围成的封闭图形命名为“曲边四边形EFGH”.(1)①如图1,当轴时,用含m,k的代数式表示点E的坐标为________;此时存在曲边四边形EFGH,则k的取值范围是________;②已知,把图1中的正方形ABCD绕点O顺时针旋转45º时,是否存在曲边四边形EFGH?请在备用图中画出图形,并说明理由.当把图1中的正方形ABCD绕点O顺时针旋转任意角度时,直接写出使曲边四边EFGH存在的k的取值范围.③若将图1中的正方形绕点O顺时针旋转角度得到曲边四边形EFGH,根据正方形和双曲线的对称性试探究四边形EFGH是什么形状的四边形?曲边四边形EFGH是怎样的对称图形?直接写出结果,不必证明;(2)正方形ABCD绕点O顺时针旋转到如图2位置,已知点A在反比例函数的图象上,AB与y轴交于点M,,,试问此时曲边四边EFGH存在吗?请说明理由.17.如图,在直角坐标系中,点在第一象限,轴于,轴于,,,有一反比例函数图象刚好过点.(1)分别求出过点的反比例函数和过,两点的一次函数的函数表达式;(2)直线轴,并从轴出发,以每秒个单位长度的速度向轴正方向运动,交反比例函数图象于点,交于点,交直线于点,当直线运动到经过点时,停止运动.设运动时间为(秒).①问:是否存在的值,使四边形为平行四边形?若存在,求出的值;若不存在,说明理由;②若直线从轴出发的同时,有一动点从点出发,沿射线方向,以每秒个单位长度的速度运动.是否存在的值,使以点,,,为顶点的四边形为平行四边形;若存在,求出的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.18.在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.(1)当△ABD为等边三角形时,①依题意补全图1;②PQ的长为;(2)如图2,当α=45°,且BD=时,求证:PD=PQ;(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)19.已知四边形是矩形.(1)如图1,分别是上的点,垂直平分,垂足为,连接.①求证:;②若,求的大小;(2)如图2,,分别是上的点,垂直平分,点是的中点,连接,若,直接写出的长.20.在平面直角坐标系中,函数和的图象关于y轴对称,它们与直线分别相交于点.(1)如图,函数为,当时,的长为_____;(2)函数为,当时,t的值为______;(3)函数为,①当时,求的面积;②若,函数和的图象与x轴正半轴分别交于点,当时,设函数的最大值和函数的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)当t=1时,AD=AB,AE=1;(2)当t=或或或时,△DEG与△ACB相似.【解析】试题分析:(1)根据勾股定理得出AB=5,要使AD=AB=5,∵动点D每秒5个单位的速度运动,∴t=1;(2)当△DEG与△ACB相似时,要分两种情况讨论,根据相似三角形的性质,列出比例式,求出DE的表达式时,要分AD<AE和AD>AE两种情况讨论.试题解析:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴或,∴t=或t=;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴或,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.点睛:本题第一问比较简单,第二问的讨论较多,关键是要理清头绪,相似三角形的讨论,和线段的大小的选择,做题时要分清,分细.2.(1)1;(2)①、;②,;(3),【解析】【分析】(1)先求出的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m<0和m≥0两种情况将点B的坐标代入对应的关系式求解即可;②当-3≤x<0时,y=x2-4x+,然后可此时的最大值和最小值,当0≤x≤3时,函数y=-x2+4x-,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值;(3)首先确定出二次函数y=-x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值,然后结合函数图象可确定出n的取值范围.【详解】解:(1)根据题意,一次函数的相关函数为,∴把点代入,则,∴;(2)根据题意,二次函数的相关函数为,①当m<0时,将B(m,)代入y=x2-4x+得m2-4m+,解得:m=2+(舍去)或m=.当m≥0时,将B(m,)代入y=-x2+4x-得:-m2+4m-=,解得:m=2+或m=2.综上所述:m=或m=或m=.②当-3≤x<0时,y=x2-4x+,抛物线的对称轴为x=2,此时y随x的增大而减小,∴当时,有最大值,即,∴此时y的最大值为.当0≤x≤3时,函数y=-x2+4x,抛物线的对称轴为x=2,当x=0有最小值,最小值为,当x=2时,有最大值,最大值y=.综上所述,当-3≤x≤3时,函数y=-x2+4x的相关函数的最大值为,最小值为;(3)如图1所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(,1),∴+2-n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值是解题的关键.3.(1)t=1;(2)存在,,理由见解析;(3)可能,或或理由见解析【解析】【分析】(1)用待定系数法求出直线AC的解析式,根据题意用t表示出点H的坐标,代入求解即可;(2)根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t﹥4,用待定系数法求出直线AB的解析式,求出点H落在BC边上时的t值,求出此时重叠面积为﹤,进一步求出重叠面积关于t的表达式,代入解t的方程即可解得t值;(3)由已知求得点D(2,1),AC=,OD=OC=OA=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC的函数解析式为y=kx+b,将点A、C坐标代入,得:,解得:,∴直线AC的函数解析式为,当点落在边上时,点E(3-t,0),点H(3-t,1),将点H代入,得:,解得:t=1;(2)存在,,使得.根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t﹥4,设直线AB的函数解析式为y=mx+n,将点A、B坐标代入,得:,解得:,∴直线AC的函数解析式为,当t﹥4时,点E(3-t,0)点H(3-t,t-3),G(0,t-3),当点H落在AB边上时,将点H代入,得:,解得:;此时重叠的面积为,∵﹤,∴﹤t﹤5,如图1,设GH交AB于S,EH交AB于T,将y=t-3代入得:,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t代入得:,∴点T,∴AG=5-t,SG=10-2t,BE=7-t,ET=,,所以重叠面积S==4--=,由=得:,﹥5(舍去),∴;(3)可能,≤t≤1或t=4.∵点D为AC的中点,且OA=2,OC=4,∴点D(2,1),AC=,OD=OC=OA=,易知M点在水平方向以每秒是4个单位的速度运动;当0﹤t﹤时,M在线段OD上,H未到达D点,所以M与正方形不相遇;当﹤t﹤1时,+÷(1+4)=秒,∴时M与正方形相遇,经过1÷(1+4)=秒后,M点不在正方行内部,则;当t=1时,由(1)知,点F运动到原E点处,M点到达C处;当1≤t≤2时,当t=1+1÷(4-1)=秒时,点M追上G点,经过1÷(4-1)=秒,点都在正方形内(含边界),当t=2时,点M运动返回到点O处停止运动,当t=3时,点E运动返回到点O处,当t=4时,点F运动返回到点O处,当时,点都在正方形内(含边界),综上,当或或时,点可能在正方形内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.4.(1)点P的坐标为;(2)①,t的取值范围是;②.【解析】【分析】(1)过点P作轴,则,因为,,可得,进而得,由30°所对的直角边等于斜边的一半可得,进而用勾股定理可得,点P的坐标即求出;(2)①由折叠知,,所以,;再根据,即可根据菱形的定义“四条边相等的四边形是菱形”可证四边形为菱形,所以,可得;根据点A的坐标可知,加之,从而有;而在中,,又因为,所以得,由和的取值范围可得t的范围是;②由①知,为等边三角形,由(1)四边形为菱形,所以,三角形DCQ为直角三角形,∠Q=60°,从而,,进而可得,又已知t的取值范围是,即可得.【详解】解:(1)如图,过点P作轴,垂足为H,则.,..在中,,,.点P的坐标为.(2)①由折叠知,,,.又,.四边形为菱形..可得.点,.有.在中,.,,其中t的取值范围是.②由①知,为等边三角形,∵四边形为菱形,∴,三角形DCQ为直角三角形,∠Q=60°,∴,,∴,∵,∴.,【点睛】本题主要考查了折叠问题,菱形的判定与性质,求不规则四边形的面积等知识.5.(1)(2)图象在范围内的最高点和最低点的坐标分别为,(3)当或或时,图象在的部分与轴只有一个交点(4),.【解析】【分析】(1)根据分函数的定义直角写成关系式即可;(2)将m=1代入(1)所得的分函数可得,然后分和两种情况分别求出最高点和最低点的坐标,最后比较最大值和最小值即可解答;(3)由于图象在的部分与轴只有一个交点时,则可令对应二元一次方程的根的判别式等于0,即可确定m的取值;同时发现无论取何实数、该函数的图象与轴总有交点,再令x=m代入原函数解析式,求出m的值,据此求出m的取值范围;(4)先令或-m①,利用根的判别式小于零确定求出m的取值范围,然后再令x=m代入或-m②,然后再令判别式小于零求出m的取值范围,令x=m代入或-m③,令判别式小于零求出m的范围,然后取①②③两两的共同部分即为m的取值范围.【详解】(1)图象对应的函数关系式为(2)当时,图象对应的函数关系式为.当时,将配方,得.所以函数值随自变量的增大而增大,此时函数有最小值,无最大值.所以当时,函数值取得最小值,最小值为.所以最低点的坐标为.当时,将配方,得.所以当时,函数值取得最小值,最小值为所以当时,函数值取得最大值,最大值为所以最低点的坐标为,最高点的坐标为所以,图象在范围内的最高点和最低点的坐标分别为,.(3)当时,令,则所以无论取何实数,该函数的图象与轴总有交点.所以当时,图象在的部分与轴只有一个交点.当时,.令,则.解得,.所以当或时,图象在的部分与轴只有一个交点.综上所述,当或或时,图象在的部分与轴只有一个交点.(4)当即,△=>0,方∵,∴m不存在;当即,△=<0,解得<m<1;①将x=m代入得-3m2+3m-1>0,因△=则m不存在;将x=-m代入得-3m2+5m-1>0,解得或;②将x=m代入得,解得或③将x=m代入得,因△=故m不存在;在①②③两两同时满足的为,,即为图象到轴的距离为个单位的点有三个时的m的取值范围.【点睛】本题属于二次函数综合题,考查了新定义函数的定义、二次函数最值和二次函数图像,正确运用二次函数图像的性质和分类讨论思想是解答本题的关键.6.(1)P(2,);(2)a的取值范围为:a<0或a>4;(3)①D(m,m+3);②2,3,4.【解析】【分析】(1)把m=1代入二次函数解析式中,进而求顶点P的坐标即可;(2)把点Q(a,b)代入二次函数解析式中,根据得到关于a的一元二次不等式即一元一次不等式组,解出a的取值范围即可;(3)①过点D作DE⊥x轴于点E,过点A作AF⊥DE于点F,求出二次函数与y轴的交点A的坐标,得到OA的长,再根据待定系数法求出直线AP的解析式,进而求出与x轴的交点B的坐标,得到OB的长;通过证明△ADF≌△ABO,得到AF=OA=m,DF=OB=3,DE=DF+EF=DF+OA=m+3,求出点D的坐标;②因为二次函数的图象与正方形ABCD的边CD有公共点,由①同理可得:C(m+3,3),分当x等于点D的横坐标时与当x等于点C的横坐标两种情况,进行讨论m可能取的整数值即可.【详解】解:(1)当m=1时,二次函数为,∴顶点P的坐标为(2,);(2)∵点Q(a,b)在二次函数的图象上,∴,即:∵,∴>0,∵m>0,∴>0,解得:a<0或a>4,∴a的取值范围为:a<0或a>4;(3)①如下图,过点D作DE⊥x轴于点E,过点A作AF⊥DE于点F,∵二次函数的解析式为,∴顶点P(2,),当x=0时,y=m,∴点A(0,m),∴OA=m;设直线AP的解析式为y=kx+b(k≠0),把点A(0,m),点P(2,)代入,得:,解得:,∴直线AP的解析式为y=x+m,当y=0时,x=3,∴点B(3,0);∴OB=3;∵四边形ABCD是正方形,∴AD=AB,∠DAF+∠FAB=90°,且∠OAB+∠FAB=90°,∴∠DAF=∠OAB,在△ADF和△ABO中,,∴△ADF≌△ABO(AAS),∴AF=OA=m,DF=OB=3,DE=DF+EF=DF+OA=m+3,∴点D的坐标为:(m,m+3);②由①同理可得:C(m+3,3),∵二次函数的图象与正方形ABCD的边CD有公共点,∴当x=m时,,可得,化简得:.∵,∴,∴,显然:m=1,2,3,4是上述不等式的解,当时,,,此时,,∴符合条件的正整数m=1,2,3,4;当x=m+3时,y≥3,可得,∵,∴,即,显然:m=1不是上述不等式的解,当时,,,此时,恒成立,∴符合条件的正整数m=2,3,4;综上:符合条件的整数m的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.7.(1)y=x2+2x﹣3;(2)①存在,点P的坐标为(1,﹣2)或(﹣5,﹣8);②点M(﹣,﹣)【解析】【分析】(1)y=ax2+bx﹣3=a(x+3)(x﹣1),即可求解;(2)①分点P(P′)在点C的右侧、点P在点C的左侧两种情况,分别求解即可;②证明△AGR≌△RHM(AAS),则点M(m+n,n﹣m﹣3),利用点M在抛物线上和AR=NR,列出等式即可求解.【详解】解:(1)y=ax2+bx﹣3=a(x+3)(x﹣1),解得:a=1,故抛物线的表达式为:y=x2+2x﹣3①;(2)由抛物线的表达式知,点C、D的坐标分别为(0,﹣3)、(﹣1,﹣4),由点C、D的坐标知,直线CD的表达式为:y=x﹣3;tan∠BCO=,则cos∠BCO=;①当点P(P′)在点C的右侧时,∵∠P′AB=∠BCO,故P′B∥y轴,则点P′(1,﹣2);当点P在点C的左侧时,设直线PB交y轴于点H,过点H作HN⊥BC于点N,∵∠PBC=∠BCO,∴△BCH为等腰三角形,则BC=2CH•cos∠BCO=2×CH×=,解得:CH=,则OH=3﹣CH=,故点H(0,﹣),由点B、H的坐标得,直线BH的表达式为:y=x﹣②,联立①②并解得:,故点P的坐标为(1,﹣2)或(﹣5,﹣8);②∵∠PAB=∠BCO,而tan∠BCO=,故设直线AP的表达式为:y=,将点A的坐标代入上式并解得:s=1,故直线AP的表达式为:y=x+1,联立①③并解得:,故点N(,);设△AMN的外接圆为圆R,当∠ANM=45°时,则∠ARM=90°,设圆心R的坐标为(m,n),∵∠GRA+∠MRH=90°,∠MRH+∠RMH=90°,∴∠RMH=∠GAR,∵AR=MR,∠AGR=∠RHM=90°,∴△AGR≌△RHM(AAS),∴AG=m+3=RH,RG=﹣n=MH,∴点M(m+n,n﹣m﹣3),将点M的坐标代入抛物线表达式得:n﹣m﹣3=(m+n)2+2(m+n)﹣3③,由题意得:AR=NR,即(m+3)2=(m﹣)2+()2④,联立③④并解得:,故点M(﹣,﹣).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形全等、圆的基本知识等,其中(2)①,要注意分类求解,避免遗漏.8.(1);(2),;(3)①;②45°【解析】【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出b的值.(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化.(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值.②可将求d1+d2最大值转化为求AC的最小值.【详解】(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=﹣x2+2x+b并解得:b=3,∴二次函数解析式为:y=﹣x2+2x+3.(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=×m×3+×1×(-m2+2m+3)-×1×3=﹣(m﹣)2+,∴当m=时,S取得最大值.(3)①由(2)可知:M′的坐标为(,).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∠M′BG=此时图像如下所示,∵l1∥l′,F与M′重合,BF⊥l1∴∠BM′P=∠BCA=,又∵∠M′BG=∠CBA=∴∠BAC=.【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.9.(1);(2)面积最大值为;(3)存在,【解析】【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)设,求得解析式,过点P作x轴得垂线与直线AB交于点F,设点,则,,即可求解;(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可.【详解】解:(1)∵抛物线过,∴∴∴(2)设,将点代入∴过点P作x轴得垂线与直线AB交于点F设点,则由铅垂定理可得∴面积最大值为(3)(3)抛物线的表达式为:y=x2+4x−1=(x+2)2−5,则平移后的抛物线表达式为:y=x2−5,联立上述两式并解得:,故点C(−1,−4);设点D(−2,m)、点E(s,t),而点B、C的坐标分别为(0,−1)、(−1,−4);①当BC为菱形的边时,点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D),即−2+1=s且m+3=t①或−2−1=s且m−3=t②,当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③,当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,联立①③并解得:s=−1,t=2或−4(舍去−4),故点E(−1,2);联立②④并解得:s=-3,t=-4±,故点E(-3,-4+)或(-3,-4−);②当BC为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m+t⑤,此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,联立⑤⑥并解得:s=1,t=−3,故点E(1,−3),综上,点E的坐标为:(−1,2)或或或(1,−3).∴存在,【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.10.(1);(2)①;②2.【解析】【分析】(1)先根据二次函数的对称性求出抛物线与x轴的另一个交点的横坐标,然后根据二次函数与一元二次方程的联系、一元二次方程的根与系数的关系即可得;(2)①先根据(1)可得抛物线的解析式和顶点D的坐标,再设,从而可得直线AD、BD解析式中的一次项系数,然后根据一元二次方程的根与系数的关系可得,,最后根据圆周角定理可得,从而可得,化简可求出a的值,由此即可得出答案;②先求出点B、D的坐标,再根据直线与抛物线只有一个交点可得出,然后联立直线与求出点N的坐标,最后利用三角形的面积公式分别求出,由此即可得.【详解】(1)抛物线,顶点D在y轴上,抛物线的对称轴为y轴,即,,抛物线与x轴的一个交点的横坐标为,抛物线与x轴的另一个交点的横坐标为,和是关于x的一元二次方程的两根,,即;(2)①由(1)可得:抛物线的解析式为,顶点D的坐标为,由题意,设点A、B的坐标分别为,且,由点A、D的坐标得:直线AD解析式中的一次项系数为,由点B、D的坐标得:直线BD解析式中的一次项系数为,联立可得,则与是关于x的一元二次方程的两根,由根与系数的关系得:,以AB为直径的圆恒过点D,,即,则,整理得:,解得或(不符题意,舍去),故抛物线的解析式为;②由①可知,,则直线的解析式为,联立可得,与抛物线只有一个公共点,方程只有一个实数根,其根的判别式,且,解得,将代入得:,联立,解得,即点N的坐标为,,,,.【点睛】本题考查了二次函数与一元二次方程的联系、一元二次方程的根与系数的关系以及根的判别式、二次函数的对称性、圆周角定理等知识点,较难的是题(2)①,利用圆周角定理得出,从而利用一次函数的性质建立等式是解题关键.11.(1)EF=2;(2)y=x(0≤x≤12);(3)满足条件的CN的值为或12.【解析】【分析】(1)在Rt△BEF中,利用勾股定理即可解决问题.(2)根据速度比相等构建关系式解决问题即可.(3)分两种情形如图3﹣1中,当MN∥DF,延长FE交DC的延长线于H.如图3﹣2中,当MN∥DE,分别利用平行线分线段成比例定理构建方程解决问题即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠B=90°,AB=CD=6,AD=BC=8,∵AF=BE=2,∴BF=6﹣2=4,∴EF===2.(2)由题意:=,∴=,∴y=x(0≤x≤12).(3)如图3﹣1中,延长FE交DC的延长线于H.∵△EFB∽△EHC,∴==,∴==,∴EH=6,CH=12,当MN∥DF时,=,∴=,∵y=x,解得x=,如图3﹣2中,当MN∥DE时,=,∴=,∵y=x,解得x=12,综上所述,满足条件的CN的值为或12.【点睛】本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.12.(I)点的坐标为;(II)四边形是平行四边形,理由见解析;(III)的最小值是.【解析】【分析】(I)由,,可得,.分别表示出点A、D的坐标,根据,即可求出点A的坐标.(II)根据点A、C关于原点O对称,设点A的坐标为:,即可分别表示出B、C、D的坐标,然后可得出与互相平分可证明出四边形是平行四边形.(III)设与的距离为,由,,梯形的面积为,可求出h=7,根据,,可得,进而得出答案.【详解】(I)∵,,∴,,设点的坐标为,则点的坐标为,由得:,解得:,∴此时点的坐标为.(II)四边形是平行四边形,理由如下:设点的坐标为,∵点、关于原点对称,∴点的坐标为,∵∥∥轴,且点、在双曲线上,,∴点,点,∴点B与点D关于原点O对称,即,且、、三点共线.又点、C关于原点O对称,即,且、、三点共线.∴与互相平分.∴四边形是平行四边形.(III)设与的距离为,,,梯形的面积为,∴,即,解得:,设点的坐标为,则点,,,由,,可得:,则,,∴,解得:,∴,∵.∴.∴,即.又,,∴当取到等号.即,时,的最小值是.【点睛】本题主要考查了反比例函数的性质和图像,本题涉及知识点比较多,打好基础是解决本题的关键.13.(1)①答案见解析②答案见解析(2)①证明见解析②【解析】【分析】(1)①根据反射的性质画出图形,可确定出点F的位置;②过点H作HG⊥AB于点G,利用点H的坐标,可知HG的长,利用矩形的性质结合已知可求出点B,C的坐标,求出BM,BF的长,再利用锐角三角函数的定义,去证明tan∠MFB=tan∠HFG,即可证得∠MFB=∠HFG,即可作出判断;(2)①连接BD,过点N作NT⊥EH于点N,交AB于点T,利用三角形中位线定理可证得EH∥BD,再证明MQ∥AB,从而可证得∠DNQ=∠BNQ,∠DQN=∠NQB,利用ASA证明△DNQ≌△BNQ,然后利用全等三角形的性质,可证得结论;②作点B关于EH对称点B',过点B'作B'G⊥BC交BC的延长线于点G,连接B'H,B'N,连接AP,过点B'作B'L⊥x轴于点L,利用轴对称的性质,可证得AP=DP,NB'=NB,∠BHN=∠NHB'根据反射的性质,易证AP,NQ,NC在一条直线上,从而可证得BN+NP+PD=AB',再利用邻补角的定义,可求出∠B'HG=30°,作EK=KH,利用等腰三角形的性质,及三角形外角的性质,求出∠CKH的度数,利用解直角三角形表示出KH,CK的长,由BC=2,建立关于x的方程,解方程求出x的值,从而可得到CH,B'H的长,利用解直角三角形求出GH,BH的长,可得到点B'的坐标,再求出AL,B'L的长,然后在Rt△AB'L中,利用勾股定理就可求出AB'的长.【详解】(1)解:①如图1,②答:反弹后能撞到位于(-0.5,0.8)位置的另一球理由:如图,设点H(-0.5,0.8),过点H作HG⊥AB于点G,∴HG=0.8∵矩形ABCD,点O,E分别为AB,CD的中点,AD=2,AB=4,∴OB=OA=2,BC=AD=OE=2∴点B(2,0),点C(2,2),∵点M(2,1.2),点F(0.5,0),∴BF=2-0.5=1.5,BM=1.2,FG=0.5-(-0.5)=1在Rt△BMF中,tan∠MFB=,在Rt△FGH中,tan∠HFG=,∴∠MFB=∠HFG,∴反弹后能撞到位于(-0.5,0.8)位置的另一球.(2)解:①连接BD,过点N作NT⊥EH于点N,交AB于点T,∴∠TNE=∠TNH=90°,∵小聪把球从B点击出,后经挡板EH反弹后落入D袋,∴∠BNH=∠DNE,∴∠DNQ=∠BNQ;∵点M是AD的中点,MQ⊥EO,∴MQ∥AB,∴点Q是BD的中点,∴NT经过点Q;∵点E,H分别是DC,BC的中点,∴EH是△BCD的中位线,∴EH∥BD∵NT⊥EH∴NT⊥BD;∴∠DQN=∠NQB=90°在△DNQ和△BNQ中,∴△DNQ≌△BNQ(ASA)∴DN=BN②作点B关于EH对称点B',过点B'作B'G⊥BC交BC的延长线于点G,连接B'H,B'N,连接AP,过点B'作B'L⊥x轴于点L,∴AP=DP,NB'=NB,∠BHN=∠NHB'由反射的性质,可知AP,NQ,NC在一条直线上,∴BN+NP+PD=NB'+NP+AP=AB';∵∠EHC=75°,∠EHC+∠BHN=180°,

∴∠BHN=180°-75°=105°,∴∠NHB'=∠EHC+∠B'HG=105°∴∠B'HG=30°;如图,作EK=KH,在Rt△ECH中,∠EHC=75°,∴∠E=90°-75°=15°,∴∠E=∠KHE=15°∴∠CKH=∠E+∠KHE=15°+15°=30°,∵设CH=x,则KH=2x,CK=∴解之:x=,∴CH=∴BH=B'H=BC-CH=2-()=;在Rt△B'GH中,B'G=;GH=B'Hcos∠B'HG=()×;BG=BH+GH=∴点B'的横坐标为:,∴点B';∴AL=,B'L=在Rt△AB'L中,AB'=∴球的运动路径BN+NP+PD的长为.【点睛】本题考查反射的性质,解直角三角形,矩形的性质,全等三角形的判定和性质以及勾股定理等知识点:(1)①根据反射的性质作图,②根据等角的三角函数值相等证明∠MFB=∠HFG来说明反弹后能撞到另一球;(2)①利用ASA证明△DNQ≌△BNQ,然后利用全等三角形的性质可得结论,②作出辅助线,根据反射的性质和轴对称的性质证明BN+NP+PD=AB',然后构建方程,解直角三角形并结合勾股定理求出AB'的长;其中能够根据反射的性质作出图形,利用方程思想及数形结合思想结合直角三角形的特殊角进行求解是解题的关键.14.(1);(2)∆PAC的面积有最大值是4,此时,P(-2,3);(3)存在,【解析】【分析】(1)根据待定系数法,即可得到答案;(2)设P,过点P作PQ⊥x轴交AC于点Q,则点Q,根(3)根据三角形的面积公式,得到二次函数解析式,即可得到答案;设,则,若以点A、M、N为顶点的三角形与△ABC相似,则或,分别求出t的值,即可得到答案.【详解】(1)∵直线y=x+2与x轴交于点A,与y轴交于点C,∴A(-4,0),C(0,2)∵抛物线y=ax2+bx+c的对称轴是x=且过A(-4,0),C(0,2),∴,解得:∴抛物线解析式为:;(2)设P,过点P作PQ⊥x轴交AC于点Q,如图,∴点Q,∴PQ==,∵=,∴当m=-2时,∆PAC的面积有最大值是4,此时,P(-2,3);(3)∵,∴A(-4,0),C(0,2)B(1,0),∴AB=5,AC=2,BC=,∵,∴AC⊥BC,∵MN⊥x轴,∴若以点A、M、N为顶点的三角形与△ABC相似,则或,设,则,①,∴,解得:②,∴,解得:综上所述:存在使得以点A、M、N为顶点的三角形与△ABC相似.【点睛】本题主要考查二次函数的图象与相似三角形的综合,分类讨论思想和数形结合的思想方法,是解题的关键.15.(1)见解析;(2);(3)①或;②或【解析】【分析】(1)连接DO,如图,先根据角平分线的定义以及平行线的性质,得出∠1=∠3,从而得到DO∥BC,再根据∠C=90°,可得出结果;(2)连接FO,根据E为中点,可以得出,在Rt△AOD中,可以求出sinA的值,从而得出∠A的度数,再证明△BOF为等边三角形,从而得出∠BOF的度数,根据弧长公式可得出结果;(3)①设圆的半径为r,过作于,则,四边形是矩形.再证明,得出,据此列方程求解;②作出点F关于BD的对称点F′,连接DE,DF,DF′,FF′,再证明,最后根据相似三角形的面积比等于相似比的平方求解.【详解】(1)证明:连结,∵平分,∴,∵,∴.∴.∴.∵,∴.∴是的切线.(2)解:∵是中点,∴.∴,∴,.连接FO,又BO=OF,∴△BOF为等边三角形,∴.∴.(3)解:①过作于,则,四边形是矩形.设圆的半径为,则,.∵,∴.而,∴.∴即,解之得,.②作出点F关于BD的对称点F′,连接FF′,DE,DF,DF′,∵∠EBD=∠FBD,∴.∵是直径,∴,而、关于轴对称,∴,,DF=DF′,∴DE∥FF′,DE=DF′,∠DEF′=∠DF′E,∴,∴.当时,,,,由①知,而,∴.又易得△BCD∽△BDE,∴,∴BD2=.在Rt△BED中,DE2=BE2-BD2=4-=,∴DE==DF′.∴与的面积比.同理可得,当时,与的面积比.∴与的面积比为或.【点睛】本题是圆与相似的综合题,主要考查切线的判定,弧、弦长与圆周角的关系,弧长的求法,相似三角形的判定与性质,等边三角形的判定与性质,平行线的判定与性质等知识,解题的关键是根据题意作出辅助线再求解.16.(1)①,;②不存在,作图与理由见解析,;③四边形EFGH是平行四边形,是中心对称图形;(2)存在,理由见解析【解析】【分析】(1)①首先确定点的纵坐标为,点又是反比例函数的图象上的点即满足反比例函数关系式,代入即可求得相对应的横坐标;点是双曲线和正方形能够相交的临界点,从而得到的取值范围.(2)根据(1)的情况,类比进而求解.【详解】解:(1)①∵以原点为中心的正方形的边长为,∴点的纵坐标为∵点在反比例函数的图象上∴∴∴∵存在曲边四边形EFGH,在反比例函数的图象上∴∴又∵∴的取值范围是:②结论:此时不存在曲边四边形理由:将正方形绕点顺时针旋转后位置如图:∵以原点为中心的正方形的边长为∴正方形的对角线为∴∴的中点的坐标为∵对于反比例函数来说,能否构成曲边四边形的临界点是的中点当时,∴∴此时不存在曲边四边形.当把图1中的正方形ABCD绕点O顺时针旋转45°时,若存在曲边四边形,则旋转任意角度时,存在曲边四边形对于反比例函数来说,能否构成曲边四边形的临界点是的中点当,时,存在曲边四边形∴∴使曲边四边EFGH存在的k的取值范围是:.③将图1中的正方形绕点O顺时针旋转角度得到曲边四边形EFGH,如图所示,由正方形和双曲线的对称性可知,E,G关于原点对称,F,H关于原点对称即OE=OG,OF=OH,∴四边形EFGH是平行四边形,曲边四边形是中心对称图形.(2)存在,理由如下:如图所示,连接OB,OA,OD,作ON⊥AB于N,AP⊥y轴于P,DQ⊥x轴于Q,∵ABCD为正方形,∴OA⊥OB,OA⊥OD,OA=OB=OD,即△OAB为等腰直角三角形∴ON=AB=AN=4,∴MN=AN-AM=4-1=3∴OM=∵∠ONM=∠APM=90°,∠OMN=∠AMP∴△ONM∽△AMP∴,即∴AP=,PM=∴OP=OM+PM=,则A点坐标为∴则反比例函数为由正方形的对称性和旋转的性质可得△OAP≌△ODQ∴OQ=OP=,DQ=AP=∴D点坐标为设直线AD解析式为将A,D代入得解得,∴直线AD解析式为令整理得则方程有两个不相等的实数根,∴直线AD与反比例函数有两个不同的交点∴曲边四边EFGH存在【点睛】本题考查了正方形的性质、反比例函数图象与性质,全等三角形与相似三角形的判定和性质,是一道新定义问题.17.(1),;(2)①不存在,理由详见解析;②存在,【解析】【分析】(1)先确定A、B、C的坐标,然后用待定系数法解答即可;(2)①可用t的代数式表示DF,然后根据DF=BC求出t的值,得到DF与CB重合,因而不存在t,使得四边形DFBC为平行四边形;②可分两种情况(点Q在线段BC上和在线段BC的延长线上)讨论,由于DE∥QC,要使以点D、E、Q、C为顶点的四边形为平行四边形,只需DE=QC,只需将DE、QC分别用的式子表示,再求出t即可解答.【详解】解:(1)由题意得,,,反比例函数为,一次函数为:.(2)①不存在.轴,轴,.又四边形是平行四边形,.设,则,,.此时与重合,不符合题意,不存在.②存在.当时,;当时,由,,得.由,.得.当时,四边形为平行四边形..,(舍)当时,四边形为平行四边形.又且,为矩形.【点睛】本题主要考查了用待定系数法求反比例函数和一次函数的解析式以及平行四边形的判定、解方程、根的判别式等知识,在解答以点D、E、Q、C为顶点的四边形的四个顶点的顺序不确定,需要分情况讨论是解答本题的关键.18.(1)①详见解析;②2;(2)详见解析;(3)BD=.【解析】【分析】(1)①根据题意画出图形即可.②解直角三角形求出PA,再利用全等三角形的性质证明PQ=PA即可.(2)作PF⊥BQ于F,AH⊥PF于H.通过计算证明DF=FQ即可解决问题.(3)如图3中,作PF⊥BQ于F,AH⊥PF于H.设BD=x,则CD=x﹣t,,利用相似三角形的性质构建方程求解即可解决问题.【详解】(1)解:①补全图形如图所示:②∵△ABD是等边三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD•tan60°=2∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=2.(2)作PF⊥BQ于F,AH⊥PF于H,如图:∵PA⊥AD,∴∠PAD=90°由题意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF⊥BQ∴∠AHF=∠HFC=∠ACF=90°∴四边形ACFH是矩形∴∠CAH=90°,AH=CF∵∠ACH=∠DAP=90°∴∠CAD=∠PAH又∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论