吉林省吉林市2026届数学高二第一学期期末监测试题含解析_第1页
吉林省吉林市2026届数学高二第一学期期末监测试题含解析_第2页
吉林省吉林市2026届数学高二第一学期期末监测试题含解析_第3页
吉林省吉林市2026届数学高二第一学期期末监测试题含解析_第4页
吉林省吉林市2026届数学高二第一学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市2026届数学高二第一学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A. B.C. D.2.上海世博会期间,某日13时至21时累计入园人数的折线图如图所示,那么在13时~14时,14时~15时,…,20时~21时八个时段中,入园人数最多的时段是()A.13时~14时 B.16时~17时C.18时~19时 D.19时~20时3.抛物线的焦点为F,A,B是拋物线上两点,若,若AB的中点到准线的距离为3,则AF的中点到准线的距离为()A.1 B.2C.3 D.44.如图为某几何体的三视图,则该几何体中最大的侧面积是()A.B.C.D.5.(一)单项选择函数在处的导数等于()A.0 B.C.1 D.e6.随着城市生活节奏的加快,网上订餐成为很多上班族的选择,下表是某外卖骑手某时间段订餐数量与送餐里程的统计数据表:订餐数/份122331送餐里程/里153045现已求得上表数据的回归方程中的值为1.5,则据此回归模型可以预测,订餐100份外卖骑手所行驶的路程约为()A.155里 B.145里C.147里 D.148里7.已知是偶函数的导函数,.若时,,则使得不等式成立的的取值范围是()A. B.C. D.8.已知某地区7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,从中随机选一人,则此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037459.知点分别为圆上的动.点,为轴上一点,则的最小值()A. B.C. D.10.直线的一个法向量为()A. B.C. D.11.命题“,”否定是()A., B.,C., D.,12.直线的倾斜角为()A.1 B.-1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列中,,且数列为等差数列,则_____________.14.某校对全校共1800名学生进行健康调查,选用分层抽样法抽取一个容量为200的样本,已知女生比男生少抽了20人,则该校的女生人数应是__________人.15.已知点,,点P在x轴上,且,则点P的坐标为______16.已知向量,,不共线,点在平面内,若存在实数,,,使得,那么的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点18.(12分)某话剧表演小组由名学生组成,若从这名学生中任意选取人,其中恰有名男生的概率是.(1)求该小组中男、女生各有多少人?(2)若这名学生站成一排照相留念,求所有排法中男生不相邻的概率.19.(12分)已知圆.(1)若不过原点的直线与圆相切,且直线在两坐标轴上的截距相等,求直线的方程;(2)求与圆和直线都相切的最小圆的方程.20.(12分)已知等差数列的前n项和为,若公差,且,,成等比数列.(1)求的通项公式;(2)求数列的前n项和.21.(12分)已知双曲线与椭圆有公共焦点,且它的一条渐近线方程为.(1)求椭圆的焦点坐标;(2)求双曲线的标准方程22.(10分)平面直角坐标系中,过椭圆:右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求椭圆M的方程;(2)C,D为椭圆M上的两点,若四边形ACBD的对角线CD与AB垂直,求四边形ACBD面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C2、B【解析】要找入园人数最多的,只要根据函数图象找出图象中变化最大的即可【详解】结合函数的图象可知,在13时~14时,14时~15时,…,20时~21时八个时段中,图象变化最快的为16到17点之间故选:B.【点睛】本题考查折线统计图的实际应用,属于基础题.3、C【解析】结合抛物线的定义求得,由此求得线段的中点到准线的距离【详解】抛物线方程为,则,由于中点到准线的距离为3,结合抛物线的定义可知,即,所以线段的中点到准线的距离为.故选:C4、B【解析】由三视图还原原几何体,确定几何体的结构,计算各面面积可得【详解】由三视图,原几何体是三棱锥,平面,,尺寸见三视图,,,故选:B5、B【解析】利用导数公式求解.【详解】因为函数,所以,所以,故选;B6、C【解析】由统计数据求样本中心,根据样本中心在回归直线上求得,即可得回归方程,进而估计时的y值即可.【详解】由题意:,,则,可得,故,当时,.故选:C7、C【解析】构造函数,分析函数在上的单调性,将所求不等式变形为,可得出关于的不等式,即可得解.【详解】构造函数,其中,则,所以,函数为上的奇函数,当时,,且不恒为零,所以,函数在上为增函数,且该函数在上也为增函数,故函数在上为增函数,因为,则,由得,可得,解得故选:C.8、D【解析】设出事件,利用全概率公式进行求解.【详解】用事件A,B分别表示随机选1人为男性或女性,用事件C表示此人恰是色盲,则,且A,B互斥,故故选:D9、B【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为1,∴若与关于x轴对称,则,即,当三点不共线时,当三点共线时,所以同理(当且仅当时取得等号)所以当三点共线时,当三点不共线时,所以∴的最小值为圆与圆的圆心距减去两个圆的半径和,∴.故选:B.10、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.11、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.12、C【解析】根据直线斜率的定义即可求解.【详解】,斜率为1,则倾斜角为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意得:考点:等差数列通项14、810【解析】分析:首先确定抽取的女生人数,然后由分层抽样比即可确定女生的人数.详解:设抽取的女生人数为,则:,解得:,则抽取的女生人数为人,抽取的男生人数为人,据此可知该校女生人数应是人.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比15、【解析】设,由,可得,求解即可【详解】设,由故解得:则点P的坐标为故答案为:16、1【解析】通过平面向量基本定理推导出空间向量基本定理得推论.【详解】因为点在平面内,则由平面向量基本定理得:存在,使得:即,整理得:,又,所以,,,从而.故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)解方程和即得解;(2)设,,将与圆P方程联立得到韦达定理,再写出直线的方程即得解.【小问1详解】解:因为为抛物线C上一点,且,所以到抛物线C的准线的距离为2则,,则,所以,故抛物线C的方程为【小问2详解】证明:由(1)知,则圆P的方程为设,,将与圆P的方程联立,可得,则,当时,,不妨令,则,此时;当时,直线DE的斜率为,则直线DE的方程为,即,即,令且,得,直线过点;综上,直线DE过定点18、(1)男生人数为,女生人数为;(2).【解析】(1)设男生的人数为,则女生人数为,且,根据组合计数原理结合古典概型的概率公式可求得的值,即可得解;(2)利用插空法结合古典概型的概率公式可求得所求事件的概率.【小问1详解】解:设男生的人数为,则女生人数为,且,由已知可得,即,因为且,解得,所以,该小组中男生人数为,女生人数为.【小问2详解】解:若男生不相邻,则先将女生全排,然后在女生所形成的个空中选个空插入男生,因此,所有排法中男生不相邻的概率为.19、(1)或;(2).【解析】(1)根据题意设出直线的方程,然后根据直线与圆相切,即可求出答案;(2)首先根据题意判断出最小圆的圆心在直线上,且最小圆的半径为,然后设出最小圆的圆心为,则圆心到直线的距离为,从而可求出答案.【小问1详解】因为直线不过原点,设直线的方程为,圆的标准方程为,若直线与圆相切,则,即,解得或者3,所以直线的方程为或者;【小问2详解】因为,所以直线与圆相离,所以所求最小圆的圆心一定在圆的圆心到直线的垂线段上,即最小圆的圆心在直线上,且最小圆的半径为,设最小圆的圆心为,则圆心到直线的距离为,所以,即,解得(舍)或,所以最小的圆的方程为.20、(1);(2).【解析】(1)由等差数列的通项公式、前n项和公式结合等比数列的性质列方程可得数列首项与公差,即可得解;(2)由,结合裂项相消法即可得解.【详解】(1)因为数列为等差数列,,,,成等比数列,所以,所以,即,又因为,所以,所以;(2)因为,所以.【点睛】本题考查了等差数列与等比数列的综合应用及裂项相消法的应用,考查了运算求解能力,属于中档题.21、(1);(2).【解析】(1)由椭圆方程及其参数关系求出参数c,即可得焦点坐标.(2)由渐近线及焦点坐标,可设双曲线方程为,再由双曲线参数关系求出参数,即可得双曲线标准方程.【小问1详解】由题设,,又,所以椭圆的焦点坐标为.【小问2详解】由题设,令双曲线为,由(1)知:,可得,所以双曲线的标准方程为.22、(1)(2)【解析】(1)设,,的中点为,利用“点差法”求解;(2)由求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论