辽宁省五校2025-2026学年数学高二上期末监测模拟试题含解析_第1页
辽宁省五校2025-2026学年数学高二上期末监测模拟试题含解析_第2页
辽宁省五校2025-2026学年数学高二上期末监测模拟试题含解析_第3页
辽宁省五校2025-2026学年数学高二上期末监测模拟试题含解析_第4页
辽宁省五校2025-2026学年数学高二上期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省五校2025-2026学年数学高二上期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里2.已知,若,则的取值范围为()A. B.C. D.3.已知A(3,2),点F为抛物线的焦点,点P在抛物线上移动,为使取得最小值,则点P的坐标为()A.(0,0) B.(2,2)C. D.4.双曲线的左焦点到其渐近线的距离是()A. B.C. D.5.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.6.实数且,,则连接,两点的直线与圆C:的位置关系是()A.相离 B.相切C.相交 D.不能确定7.设数列的前项和为,且,则()A. B.C. D.8.已知等比数列的前n项和为,公比为q,若,则下列结论正确的是()A. B.C. D.9.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.510.双曲线的离心率为,焦点到渐近线的距离为,则双曲线的焦距等于A. B.C. D.11.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.12.已知双曲线的左焦点为,,为双曲线的左、右顶点,渐近线上的一点满足,且,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足前项和,则数列的通项公式为_____________14.某个弹簧振子在振动过程中的位移y(单位:mm)与时间t(单位:s)之间的关系为,则当s时,弹簧振子的瞬时速度为_________mm/s.15.已知抛物线上一点到其焦点的距离为10.抛物线的方程为_____________;准线方程为_______16.以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;②抛物线焦点坐标是;③过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹为椭圆;④曲线与曲线(且)有相同的焦点其中真命题的序号为______(写出所有真命题的序号.)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.18.(12分)△ABC的三个顶点分别为(1)求△ABC的外接圆M的方程;(2)设直线与圆M交于两点,求|PQ|的值19.(12分)已知椭圆:的长轴长是短轴长的倍,且经过点.(1)求的标准方程;(2)的右顶点为,过右焦点的直线与交于不同的两点,,求面积的最大值.20.(12分)已知抛物线上的点M到焦点F的距离为5,点M到x轴的距离为(1)求抛物线C的方程;(2)若抛物线C的准线l与x轴交于点Q,过点Q作直线交抛物线C于A,B两点,设直线FA,FB的斜率分别为,.求的值21.(12分)在2016珠海航展志愿服务开始前,团珠海市委调查了北京师范大学珠海分校某班50名志愿者参加志愿服务礼仪培训和赛会应急救援培训的情况,数据如下表:单位:人参加志愿服务礼仪培训未参加志愿服务礼仪培训参加赛会应急救援培训88未参加赛会应急救援培训430(1)从该班随机选1名同学,求该同学至少参加上述一个培训的概率;(2)在既参加志愿服务礼仪培训又参加赛会应急救援培训的8名同学中,有5名男同学A,A,A,A,A名女同学B,B,B现从这5名男同学和3名女同学中各随机选1人,求A被选中且B未被选中的概率.22.(10分)在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.2、C【解析】根据题意,由为原点到直线上点的距离的平方,再根据点到直线垂线段最短,即可求得范围.【详解】由,,视为原点到直线上点的距离的平方,根据点到直线垂线段最短,可得,所有的取值范围为,故选:C.3、B【解析】设点P到准线的距离为,根据抛物线的定义可知,即可根据点到直线的距离最短求出【详解】如图所示:设点P到准线的距离为,准线方程为,所以,当且仅当点为与抛物线的交点时,取得最小值,此时点P的坐标为故选:B4、A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A5、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题6、B【解析】由题意知,m,n是方程的根,再根据两点式求出直线方程,利用圆心到直线的距离与半径之间的关系即可求解.【详解】由题意知,m,n是方程的根,,,过,两点的直线方程为:,圆心到直线的距离为:,故直线和圆相切,故选:B【点睛】本题考查了直线与圆的位置关系,考查了计算求解能力,属于基础题.7、C【解析】利用,把代入中,即可求出答案.【详解】当时,.当时,.故选:C.8、D【解析】根据,可求得,然后逐一分析判断各个选项即可得解.【详解】解:因为,所以,因为,所以,所以,故A错误;又,所以,所以,所以,故BC错误;所以,故D正确.故选:D.9、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B10、D【解析】不妨设双曲线方程为,则,即设焦点为,渐近线方程为则又解得.则焦距为.选:D11、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.12、C【解析】由双曲线的渐近线方程和两点的距离公式,求得点的坐标和,在中,利用余弦定理,求得的关系式,再由离心率公式,计算即可求解.【详解】由题意,双曲线,可得,设在渐近线上,且点在第一象限内,由,解得,即点,所以,在中,由余弦定理可得,可得,即,所以双曲线离心率为.故选:C.【点睛】求解椭圆或双曲线的离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知中前项和,结合,分别讨论时与时的通项公式,并由时,的值不满足时的通项公式,故要将数列的通项公式写成分段函数的形式【详解】∵数列前项和,∴当时,,又∵当时,,故,故答案为.【点睛】本题考查的知识点是等差数列的通项公式,其中正确理解由数列的前n项和Sn,求通项公式的方法和步骤是解答本题的关键14、0【解析】根据题意得,进而根据导数几何意义求解时的导函数值即可得答案.【详解】解:因为,所以求导得,所以根据导数的几何意义得该振子在时的瞬时速度为,故答案为:.15、①.②.【解析】由题意得:抛物线焦点为F(0,),准线方程为y=﹣.因为点到其焦点的距离为10,所以根据抛物线的定义得到方程,得到该抛物线的准线方程【详解】∵抛物线方程∴抛物线焦点为F(0,),准线方程为y=﹣,又∵点到其焦点的距离为10,∴根据抛物线的定义,得9+=10,∴p=2,抛物线∴准线方程为故答案为:,.16、②④##④②【解析】利用双曲线定义判断命题①;写出抛物线焦点判断命题②;分析点P满足的关系判断命题③;按取值讨论计算半焦距判断命题④作答.【详解】对于①,因双曲线定义中要求,则命题①不正确;对于②,抛物线化为:,其焦点坐标是,命题②正确;对于③,令定圆C的圆心为C,因,则点P是弦AB的中点,当P与C不重合时,有,点P在以线段AC为直径的圆上,当P与C重合时,点P也在以线段AC为直径的圆上,因此,动点P的轨迹是以线段AC为直径的圆(除A点外),则命题③不正确;对于④,曲线的焦点为,当时,椭圆中半焦距c满足:,其焦点为,当时,双曲线中半焦距满足:,其焦点为,因此曲线与曲线(且)有相同的焦点,命题④正确,所以真命题的序号为②④.故答案为:②④【点睛】易错点睛:椭圆长短半轴长分别为a,b,半焦距为c满足关系式:;双曲线的实半轴长、虚半轴长、半焦距分别为、、满足关系式:,在同一问题中出现认真区分,不要混淆.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)抛物线C的方程为,准线方程为(2)或.【解析】(1)将点代入抛物线求出即可得出抛物线方程和准线方程;(2)设出直线方程,与抛物线联立,表示出弦长和即可求出.【小问1详解】将代入可得,解得,所以抛物线C的方程为,准线方程为;【小问2详解】由题得,设直线方程为,,设,联立方程,可得,则,所以,因为直线与准线交于点Q,则,则,因为,所以,解得,所以直线l的方程为或.18、(1);(2).【解析】(1)设出圆的一般方程,根据的坐标满足圆方程,待定系数,即可求得圆方程;(2)根据(1)中所求圆方程,结合弦长公式,即可求得结果.【小问1详解】设圆M的方程为,因为都在圆上,则,解得,故圆M的方程为,也即.【小问2详解】由(1)可知,圆M的圆心坐标为,半径为,点M到直线的距离故.19、(1);(2)【解析】(1)利用已知条件,结合椭圆方程求出,即可得到椭圆方程(2)设出直线方程,联立椭圆与直线方程,利用韦达定理,弦长公式,列出三角形的面积,再利用基本不等式转化求解即可【详解】(1)解:由题意解得,,所以椭圆的标准方程为(2)点,右焦点,由题意知直线的斜率不为0,故设的方程为,,,联立方程得消去,整理得,∴,,,,当且仅当时等号成立,此时:,所以面积的最大值为【点睛】本题考查椭圆的性质和方程的求法,考查联立直线方程和椭圆方程消去未知数,运用韦达定理化简整理和运算能力,属于中档题20、(1)(2)0【解析】(1)由焦半径公式求C的方程;(2)设直线AB方程,与抛物线方程联立,由韦达定理表示出,,代入中化简求值即可.小问1详解】设点,则,所以,解得因为,所以.所以抛物线C的方程为【小问2详解】由题知,,,直线AB的斜率必存在,且不为零设,,直线AB的斜率为k,则直线AB的方程为,由,得所以,,且,即所以所以的值为021、(1);(2).【解析】(1)根据表中数据知未参加志愿服务礼仪培训又未参加赛会应急救援培训的有30人,故至少参加上述一个培训的共有人.从而求得概率;(2)从这5名男同学和3名女同学中各随机选1人,列出其一切可能的结果,从而求得被选中且未被选中的概率.【详解】解:由调查数据可知,既未参加志愿服务礼仪培训又未参加赛会应急救援培训的有30人,故至少参加上述一个培训的共有人.从该班随机选1名同学,该同学至少参加上述一个培训的概率为;从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:,,,共15个,根据题意,这些

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论