2025年湖南岳阳第一中学数学高二第一学期期末监测模拟试题含解析_第1页
2025年湖南岳阳第一中学数学高二第一学期期末监测模拟试题含解析_第2页
2025年湖南岳阳第一中学数学高二第一学期期末监测模拟试题含解析_第3页
2025年湖南岳阳第一中学数学高二第一学期期末监测模拟试题含解析_第4页
2025年湖南岳阳第一中学数学高二第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年湖南岳阳第一中学数学高二第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题p:,,则命题p的否定为()A, B.,C., D.,2.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.3.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24 B.18C.12 D.64.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面5.若的解集是,则等于()A.-14 B.-6C.6 D.146.圆的圆心坐标与半径分别是()A. B.C. D.7.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.8.已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列 B.数列一定是等差数列C.数列一定是等差数列 D.数列可能是常数数列9.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A. B.C. D.10.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.11.设椭圆C:的右焦点为F,过原点O的动直线l与椭圆C交于A,B两点,那么的周长的取值范围为()A. B.C. D.12.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块二、填空题:本题共4小题,每小题5分,共20分。13.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为45°的直角梯形(如图所示),则该椭圆的离心率为_____.14.已知向量,且,则实数________________15.若数列满足,,设,类比课本中推导等比数列前项和公式的方法,可求得______________16.设,则动点P的轨迹方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.18.(12分)已知抛物线上的点P(3,c)),到焦点F的距离为6(1)求抛物线C的方程;(2)过点Q(2,1)和焦点F作直线l交抛物线C于A,B两点,求△PAB的面积19.(12分)如图,在三棱柱中,面ABC,,,D为BC的中点(1)求证:平面;(2)若F为中点,求与平面所成角的正弦值20.(12分)已知椭圆:的左、右焦点分别为,,过点的直线l交椭圆于A,两点,的中点坐标为.(1)求直线l的方程;(2)求的面积.21.(12分)在直角坐标系中,点到两点、的距离之和等于,设点的轨迹为,直线与交于、两点(1)求曲线的方程;(2)若,求的值22.(10分)已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.2、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A3、C【解析】根据题意,结合计数原理中的分步计算,以及排列组合公式,即可求解.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有种可能,从1,3,5中选两个数字为十位数和百位数,有种可能,故这个无重复数字的三位数为偶数的个数为.故选:C.4、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D5、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.6、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.7、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.8、B【解析】可根据已知条件,设出公差为,选项A,可借助等比数列的定义使用数列是等差数列,来进行判定;选项B,数列,可以取,即可判断;选项C,可设,表示出再进行判断;选项D,可采用换元,令,求得的关系即可判断.【详解】数列是等差数列,设公差为,选项A,数列是等差数列,那么为常数,又,则数列一定是等比数列,所以选项A正确;选项B,当时,数列不存在,故该选项错误;选项C,数列是等差数列,可设(A、B为常数),此时,,则为常数,故数列一定是等差数列,所以该选项正确;选项D,,则,当时,,此时数列可能是常数数列,故该选项正确.故选:B.9、D【解析】由题意得,,,然后在和求出,从而可求出的值【详解】如图,由题意得,,,在中,,在中,,所以,故选:D10、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程11、A【解析】根据椭圆的对称性椭圆的定义可得,结合的范围求的周长的取值范围.【详解】的周长,又因为A,B两点为过原点O的动直线l与椭圆C的交点,所以A,B两点关于原点对称,椭圆C的左焦点为,则,所以,又因为三点不共线,所以,所以的周长的取值范围为,故选:A.12、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故答案为:14、【解析】,利用向量的数量积的坐标运算即可.【详解】,则,解得故答案为:15、n【解析】先对两边同乘以4,再相加,化简整理即可得出结果.【详解】由①得:②所以①②得:,所以,,故答案为【点睛】本题主要考查类比推理的思想,结合错位相减法思想即可求解,属于基础题型.16、【解析】根据双曲线的定义可得答案.【详解】因为,所以动点P的轨迹是焦点为A,B,实轴长为4的双曲线的上支.因为,所以,所以动点P的轨迹方程为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数列.所以,,.由题意得,解得,所以.(2)由(1)可得,所以数列的前项和.18、(1)(2)【解析】(1)根据抛物线的焦半径公式求得,即可得到抛物线方程;(2)写出直线方程,联立抛物线方程,进而求得弦长|AB|,再求出点P到直线的距离,即可求得答案.【小问1详解】由抛物线的焦半径公式可知:,即得,故抛物线方程为:;【小问2详解】点Q(2,1)和焦点作直线l,则l方程为,即,联立抛物线方程:,整理得,设,则,故,点P(3,c)在抛物线上,则,点P到直线l的距离为,故△PAB的面积为.19、(1)证明见解析(2)【解析】(1)连接交于点O,连接OD,通过三角形中位线证明即可;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】解法1:如图,连接交于点O,连接OD,因为在三棱柱中,四边形是平行四边形,所以O是的中点,因为D为BC的中点,所以在中,,因为平面,平面,所以平面平面解法2:因为在三棱柱中,面ABC,,所以BA,BC,两两垂直,故以B点为坐标原点,建立如图的空间直角坐标系,因为,所以B(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,设平面的一个法向量为,则,即,令,则,∴,平面,所以平面;【小问2详解】设与平面所成角为,由(1)知平面法向量为,F为中点,∴,,∴即与平面所成角正弦值为.20、(1)(2)【解析】(1)设,根据AB的中点坐标可得,再利用点差法求得直线的斜率,即可求出直线方程;(2)易得直线过左焦点,联立直线和椭圆方程,消,利用韦达定理求得,再根据即可得出答案.【小问1详解】解:设,因为的中点坐标为,所以,则,两式相减得,即,即,所以直线l的斜率为1,所以直线l的方程为,即;【小问2详解】在直线中,当时,,由椭圆:,得,则直线过点,联立,消整理得,则,.21、(1);(2).【解析】(1)本题可根据椭圆的定义求出点的轨迹;(2)本题首先可设、,然后联立椭圆与直线方程,通过韦达定理得出、,最后通过得出,代入、的值并计算,即可得出结果.【详解】(1)因为点到两点、的距离之和等于,所以结合椭圆定义易知,点的轨迹是以点、为焦点且的椭圆,则,,,点的轨迹.(2)设,,联立,整理得,则,,因为,所以,即,整理得,则,整理得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论