2026届安徽省黄山市屯溪区第二中学高二数学第一学期期末综合测试试题含解析_第1页
2026届安徽省黄山市屯溪区第二中学高二数学第一学期期末综合测试试题含解析_第2页
2026届安徽省黄山市屯溪区第二中学高二数学第一学期期末综合测试试题含解析_第3页
2026届安徽省黄山市屯溪区第二中学高二数学第一学期期末综合测试试题含解析_第4页
2026届安徽省黄山市屯溪区第二中学高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省黄山市屯溪区第二中学高二数学第一学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的长轴长为()A. B.C. D.2.函数的大致图象是()A. B.C. D.3.圆的圆心坐标和半径分别为()A.和 B.和C.和 D.和4.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.5.抛物线的焦点到准线的距离为()A. B.C. D.16.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.7.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.8.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.9.双曲线的渐近线方程和离心率分别是A. B.C. D.10.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,第五层有15个球,…,各层球数之差:,,,,…即2,3,4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为()A.51 B.68C.106 D.15711.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁12.若双曲线的焦距为,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是椭圆的两个焦点,点M在C上,则的最大值为_______14.已知椭圆C:的左右焦点分别为,,O为坐标原点,以下说法正确的是______①过点的直线与椭圆C交于A,B两点,则的周长为8②椭圆C上存在点P,使得③椭圆C的离心率为④P为椭圆上一点,Q为圆上一点,则线段PQ的最大长度为315.已知抛物线:,斜率为且过点的直线与交于,两点,且,其中为坐标原点(1)求抛物线的方程;(2)设点,记直线,的斜率分别为,,证明:为定值16.千年一遇对称日,万事圆满在今朝,年月日又是一个难得的“世界完全对称日”(公历纪年日期中数字左右完全对称的日期).数学上把这样的对称自然数叫回文数,两位数的回文数共有个(),其中末位是奇数的又叫做回文奇数,则在内的回文奇数的个数为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的右焦点为,且经过点.(1)求椭圆的标准方程;(2)设椭圆的左顶点为,过点的直线(与轴不重合)交椭圆于两点,直线交直线于点,若直线上存在另一点,使.求证:三点共线.18.(12分)已知数列{an}满足*(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn19.(12分)已知函数(1)证明;(2)设,证明:若一定有零点,并判断零点的个数20.(12分)已知椭圆的左,右焦点分别为,三个顶点(左、右顶点和上顶点)构成的三角形的面积为,离心率为方程的根.(1)求椭圆方程;(2)椭圆的一个内接平行四边形的一组对边分别过点和,如图,若这个平行四边形面积为,求平行四边形的四个顶点的纵坐标的乘积.21.(12分)如图,在四棱锥中,已知平面ABCD,为等边三角形,,,.(1)证明:平面PAD;(2)若M是BP的中点,求二面角的余弦值.22.(10分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由椭圆方程可直接求得.【详解】由椭圆方程知:,长轴长为.故选:D.2、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.3、C【解析】利用圆的一般方程的圆心和半径公式,即得解【详解】可化为,由圆心为,半径,易知圆心的坐标为,半径为.故选:C4、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.5、B【解析】由可得抛物线标椎方程为:,由焦点和准线方程即可得解.【详解】由可得抛物线标准方程为:,所以抛物线的焦点为,准线方程为,所以焦点到准线的距离为,故选:B【点睛】本题考了抛物线标准方程,考查了焦点和准线相关基本量,属于基础题.6、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C7、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B8、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C9、A【解析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【点睛】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解10、C【解析】对高阶等差数列按其定义逐一进行构造数列,直到出现一般等差数列为止,再根据其递推关系进行求解.【详解】现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,各项与前一项之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差数列,所以,故选:C11、C【解析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【点睛】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题12、A【解析】由焦距为可得,又,进而可得,最后根据焦点在轴上的双曲线的渐近线方程为即可求解.【详解】解:因为双曲线的焦距为,所以,所以,解得,所以,所以双曲线的渐近线方程为,即,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】根据椭圆定义可得:,再用基本不等式求解.【详解】由椭圆的定义可得:,由基本不等式得:,当且仅当时,等号成立,故的最大值为16故答案为:1614、①②④【解析】根据椭圆的几何性质结合的周长计算可判断①;根据,可通过以为直径作圆,是否与椭圆相交判断②;求出椭圆的离心率可判断③;计算椭圆上的点到圆心的距离的最大值,即可判断④.【详解】对于①,由题意知:的周长等于,故①正确;对于②,,故以为直径作圆,与椭圆相交,交点即设为P,故椭圆C上存在点P,使得,故②正确;对于③,,故③错误;对于④,设P为椭圆上一点,坐标为,则,故,因为,所以的最大值为2,故线段PQ的最大长度为2+1=3,故④正确,故答案为:①②④.15、(1)(2)为定值6【解析】(1)由题意可知:将直线方程代入抛物线方程,由韦达定理可知:,,,,求得p的值,即可求得抛物线E的方程;(2)由直线的斜率公式可知:,,,代入,,即可得到:.试题解析:(1)直线的方程为,联立方程组得,设,,所以,,又,所以,从而抛物线的方程为(2)因为,,所以,,因此,又,,所以,即为定值点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.16、【解析】根据分类加法计数原理,结合题中定义、组合的定义进行求解即可.【详解】两位数的回文奇数有,共个,三位数的回文奇数有,四位数的回文奇数有,所以在内的回文奇数的个数为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据给定条件利用椭圆的定义求出轴长即可计算作答.(2)根据给定条件设出的方程,与椭圆C的方程联立,求出直线PA的方程并求出点M的坐标,求出点N的坐标,再利用斜率推理作答.【小问1详解】依题意,椭圆的左焦点,由椭圆定义得:即,则,所以椭圆的标准方程为.【小问2详解】由(1)知,,直线不垂直y轴,设直线方程为,,由消去x得:,则,,直线的斜率,直线的方程:,而直线,即,直线的斜率,而,即,直线的斜率,直线的方程:,则点,直线的斜率,直线的斜率,,而,即,所以三点共线.【点睛】思路点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系18、(1)(2)【解析】(1)根据递推关系式可得,再由等差数列的定义以及通项公式即可求解.(2)利用错位相减法即可求解.【小问1详解】(1),即,所以数列为等差数列,公差为1,首项为1,所以,即.【小问2详解】令,所以,所以19、(1)证明见解析;(2)证明见解析,1个零点.【解析】(1)求导同分化简,构造新函数判断导数正负即可;(2)令g(x)=0,化简方程,将问题转化为讨论方程解的个数问题.【小问1详解】,设,则,时,递减,时,递增,而,所以时,,所以;小问2详解】有零点,则有解,即有解,又,则只要,因为,方程可以化为,现在证明有解,令,则,可知在递减,在递增,所以,因为,所以,在内恒有,而在递增,当x=时,h()=,故根据零点存在性定理知在存在唯一零点.所以有且只有一个零点,所以有零点,有一个零点【点睛】本题关键是是将方程零点问题转化为方程解的问题,通过讨论单调性和最值(极值)的正负即可判断零点的有无和个数.20、(1);(2).【解析】(1)由椭圆离心率的性质及一元二次方程的根可得,再由椭圆参数关系、已知三角形面积求椭圆参数,即可得椭圆方程.(2)设直线,联立椭圆方程并结合韦达定理求,进而可得,再根据求参数t,可得,结合椭圆的对称性求,即可求结果.【小问1详解】由的根为,所以椭圆的离心率,依题意,,解得,即椭圆的方程为;【小问2详解】设直线,联立,消去得,由韦达定理得:,所以,所以,所以椭圆的内接平行四边形面积.所以,解得或(舍去),所以,根据椭圆的对称性知:,故平行四边形的四个顶点的纵坐标的乘积为.21、(1)证明见解析(2)【解析】(1)根据条件先证明,再根据线面平行的判定定理证明平面PAD;(2)确定坐标原点,建立空间直角坐标系,从而求出相关的点的坐标,进而求得相关向量的坐标,再求相关平面的法向量,根据向量的夹角公式求得结果.【小问1详解】证明:由已知为等边三角形,且,所以又因为,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小问2详解】解:取的中点,连接,则,由(1)知,所以,分别以,,为,,轴建立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论