吉林省长春市吉林实验中学2025年高二数学第一学期期末达标检测试题含解析_第1页
吉林省长春市吉林实验中学2025年高二数学第一学期期末达标检测试题含解析_第2页
吉林省长春市吉林实验中学2025年高二数学第一学期期末达标检测试题含解析_第3页
吉林省长春市吉林实验中学2025年高二数学第一学期期末达标检测试题含解析_第4页
吉林省长春市吉林实验中学2025年高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市吉林实验中学2025年高二数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,已知,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形2.若直线与曲线有公共点,则b的取值范围是()A. B.C. D.3.已知双曲线的离心率为2,则()A.2 B.C. D.14.已如双曲线(,)的左、右焦点分别为,,过的直线交双曲线的右支于A,B两点,若,且,则该双曲线的离心率为()A. B.C. D.5.已知点是椭圆上的任意一点,过点作圆:的切线,设其中一个切点为,则的取值范围为()A. B.C. D.6.设各项均为正项的数列满足,,若,且数列的前项和为,则()A. B.C.5 D.67.函数在的最大值是()A. B.C. D.8.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假9.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.10.某公司要建造一个长方体状的无盖箱子,其容积为48m3,高为3m,如果箱底每1m2的造价为15元,箱壁每1m2造价为12元,则箱子的最低总造价为()A.72元 B.300元C.512元 D.816元11.若,则()A.1 B.2C.3 D.412.已知双曲线的右焦点为F,则点F到其一条渐近线的距离为()A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左焦点到直线的距离为________.14.在锐角中,角A,B,C的对边分别为a,b,c.若,,,则的面积为_________15.射击队某选手命中环数的概率如下表所示:命中环数10987概率0.320.280.180.120.1该选手射击两次,两次命中环数相互独立,则他至少命中一次9环或10环的概率为_________________.(结果用小数表示)16.已知为抛物线上任意一点,为抛物线的焦点,为平面内一定点,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)p:函数在区间是递增的;q:方程有实数解.(1)若p为真命题,求m的取值范围;(2)若“”为真,“”为假,求m的取值范围.18.(12分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若,且的面积为,求的周长.19.(12分)已知,其中.(1)若,求在处的切线方程;(2)若是函数的极小值点,求函数在区间上的最值;(3)讨论函数的单调性.20.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程21.(12分)已知函数.(1)当时,证明:存在唯一的零点;(2)若,求实数的取值范围.22.(10分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用诱导公式、两角和的正弦公式化简已知条件,由此判断出三角形的形状.【详解】由,得,得,由于,所以,所以.故选:B2、D【解析】将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:当直线经过时最大,即,当直线与下半圆相切时最小,由圆心到直线距离等于半径2,可得:解得(舍去),或结合图象可得故选:D.3、D【解析】由双曲线的性质,直接表示离心率,求.【详解】由双曲线方程可知,因为,所以,解得:,又,所以.故选:D【点睛】本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题能力,属于中档题型,一般求双曲线离心率的方法:

直接法:直接求出,然后利用公式求解;2.公式法:,3.构造法:根据条件,可构造出的齐次方程,通过等式两边同时除以,进而得到关于的方程.4、A【解析】先作辅助线,设出边长,结合题干条件得到,,利用勾股定理得到关于的等量关系,求出离心率.【详解】连接,设,则根据可知,,因为,由勾股定理得:,由双曲线定义可知:,,解得:,,从而,解得:,所以,,由勾股定理得:,从而,即该双曲线的离心率为.故选:A5、B【解析】设,得到,利用椭圆的范围求解.【详解】解:设,则,,,因为,所以,即,故选:B6、D【解析】由利用因式分解可得,即可判断出数列是以为首项,为公差的等差数列,从而得到数列,数列的通项公式,进而求出【详解】等价于,而,所以,即可知数列是以为首项,为公差的等差数列,即有,所以,故故选:D7、C【解析】利用函数单调性求解.【详解】解:因为函数是单调递增函数,所以函数也是单调递增函数,所以.故选:C8、D【解析】先判断出命题,的真假,即可判断.【详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.9、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A10、D【解析】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,则f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低总造价【详解】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,当且仅当x,即x=4时,f(x)取最小值816元故选:D11、C【解析】由二项分布的方差公式即可求解.【详解】解:因为,所以.故选:C.12、A【解析】由双曲线方程可写出右焦点坐标,再写一渐近线方程,根据点到直线的距离公式可得答案.【详解】双曲线的右焦点F坐标为,根据双曲线的对称性,不妨取一条渐近线为,故点F到渐近线的距离为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线方程求得左焦点的坐标,利用点到直线的距离公式即可求得结果.【详解】因为双曲线的方程为,设其左焦点的坐标为,故可得,解得,故左焦点的坐标为,则其到直线的距离.故答案为:.14、【解析】根据求出,由向量数量积得到,使用余弦定理得到方程组,求出,利用面积公式求出结果.【详解】因为,所以,即,而因为是锐角三角形,所以,所以,所以,因为,所以,即,因为,所以,整理得:①,其中,即,因为,所以,即,解得:②,把②代入①得:,解得:,则的面积为.故答案为:15、84【解析】先求出该选手射击两次,两次命中的环数都低于9环的概率,由对立事件的概率可得答案.【详解】该选手射击一次,命中的环数低于9环的概率为该选手射击两次,两次命中的环数都低于9环的概率为所以他至少命中一次9环或10环的概率为故答案:0.8416、3【解析】利用抛物线的定义,再结合图形即求.【详解】由题可得抛物线的准线为,设点在准线上的射影为,则根据抛物线的定义可知,∴要求取得最小值,即求取得最小,当三点共线时最小,为.故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)依题意在区间上恒成立,参变分离可得在区间上恒成立,再利用基本不等式计算可得;(2)首先求出命题为真时参数的取值范围,再根据“”为真,“”为假,即可得到真假,或假真,从而得到不等式组,解得即可;【小问1详解】解:为真命题,即函数在区间上是递增的∴在区间上恒成立,∴在区间上恒成立,∵,当且仅当时等号成立,∴的取值范围为.【小问2详解】解:为真命题,即方程有实数解∴即∴或∵“”为真,“”为假∴真假,或假真∴或,解得或,∴的取值范围为或;18、(1)(2)【解析】(1)由,根据正弦定理化简得,利用余弦定理求得,即可求解;(2)由的面积,求得,结合余弦定理,求得,即可求解.【小问1详解】解:因为,所以.由正弦定理得,可得,所以,因为,所以.【小问2详解】解:由的面积,所以.由余弦定理得,所以,所以,所以的周长为.19、(1);(2)最大值为5,最小值为;(3)答案见解析.【解析】(1)求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程;(2)根据求出a,进而求出函数的单调区间,然后求出函数的最值;(3)先求出导函数,然后讨论a的取值范围,进而求出函数的单调区间.【小问1详解】当时,,,切点坐标为,,切线的斜率为,切线方程为,即.【小问2详解】,是函数的极小值点,,即,,令,得或,令,得,的单调递增区间为,,的单调递减区间为,,函数在区间上的最大值为5,最小值为.【小问3详解】函数的定义域为,,令得,.①当时,,函数在R上单调递增;②当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为;③当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为.综上:时,,函数R上单调递增;时,的单调递增区间为,,单调递减区间为;时,的单调递增区间为,,单调递减区间为.20、(1);(2)面积的最小值为,此时直线的方程为.【解析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最小值,利用等号成立的条件可求得的值,即可得出直线的方程.【小问1详解】解:由题意可得.【小问2详解】解:在直线的方程中,令可得,即点,令可得,即点,由已知可得,解得,所以,,当且仅当时,等号成立,此时直线的方程为,即.21、(1)证明见解析;(2)【解析】(1)当时,求导得到,判断出函数的单调性,求出最值,可证得命题成立;(2)当且时,不满足题意,故,又定义域为,讲不等式化简,参变分离后构造新函数,求导判断单调性并求出最值,可得实数的取值范围【详解】(1)函数的定义域为,当时,由,当时,,单调递减;当时,,单调递增;.且,故存在唯一的零点;(2)当时,不满足恒成立,故由定义域为,可得,令,则,则当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得最大值(1),故实数的取值范围是【点睛】方法点睛:本题考查函数零点的问题,考查导数的应用,考查不等式的恒成立问题,关于恒成立问题的几种常见解法总结如下:

参变分离法,将不等式恒成立问题转化函数求最值问题;

主元变换法,把已知取值范围的变量作为主元,把求取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论