版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市教育学会2025年高二上数学期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列中,,,则()A.2 B.4C.6 D.82.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是()A.6 B.8C.9 D.103.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.4.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.5.椭圆的离心率为()A. B.C. D.6.设双曲线与幂函数的图象相交于,且过双曲线的左焦点的直线与函数的图象相切于,则双曲线的离心率为()A. B.C. D.7.已知空间四边形中,,,,点在上,且,为中点,则等于()A. B.C. D.8.《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为A. B.C. D.9.已知等比数列中,,前三项之和,则公比的值为()A1 B.C.1或 D.或10.已知双曲线,其中一条渐近线与x轴的夹角为,则双曲线的渐近线方程是()A. B.C. D.11.函数在区间(0,e)上的极小值为()A.-e B.1-eC.-1 D.112.过点且斜率为的直线方程为()A. B.C D.二、填空题:本题共4小题,每小题5分,共20分。13.求值______.14.命题“若,则”的逆否命题为______15.等差数列前项之和为,若,则________16.定义在上的函数满足:有成立且,则不等式的解集为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列满足(1)求的通项公式;(2)记数列的前项和为,是否存在实数,使得对任意恒成立.18.(12分)已知中,内角的对边分别为,且满足.(1)求的值;(2)若,求面积的最大值.19.(12分)已知圆的方程为(1)求圆的圆心及半径;(2)是否存在直线满足:经过点,且_________________?如果存在,求出直线的方程;如果不存在,请说明理由从下列三个条件中任选一个补充在上面问题中并作答:条件①:被圆所截得的弦长最长;条件②:被圆所截得的弦长最短;条件③:被圆所截得的弦长为注:如果选择多个条件分别作答,按第一个解答计分20.(12分)在如图三角形数阵中第n行有n个数,表示第i行第j个数,例如,表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m为公差的等差数列,从第三行起每一行的数从左到右构成以m为公比的等比数列(其中).已知.(1)求m及;(2)记,求.21.(12分)命题:函数有意义;命题:实数满足.(1)当且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.22.(10分)已知椭圆的离心率为,右焦点F到上顶点的距离为.(1)求椭圆的方程;(2)是否存在过点F且与x轴不垂直的直线与椭圆交于A、B两点,使得点C()在线段AB的中垂线上?若存在,求出直线l:若不存在,说明理曲.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由等比中项转化得,可得,求解基本量,由等比数列通项公式即得解【详解】设公比为,则由,得,即故,解得故选:D2、A【解析】计算抛物线的准线,根据距离结合抛物线的定义得到答案.【详解】抛物线的焦点为,准线方程为,到轴的距离是4,故到准线的距离是,故点到该抛物线焦点的距离是.故选:A.3、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目4、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.5、A【解析】由椭圆标准方程求得,再计算出后可得离心率【详解】在椭圆中,,,,因此,该椭圆的离心率为.故选:A.【点睛】本题考查求椭圆的离心率,根据椭圆标准方程求出即可6、B【解析】设直线方程为,联立,利用判别式可得,进而可求,再结合双曲线的定义可求,即得.【详解】可设直线方程为,联立,得,由题意得,∴,,∴,即,由双曲线定义得,.故选:B.7、B【解析】利用空间向量运算求得正确答案.【详解】.故选:B8、B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意求得,再由古典概型及其概率的公式,即可求解【详解】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B【点睛】本题主要考查了古典概型及其概率的计算,其中解答中根据题意列出方程组,求得两种灯球的数量是解答的关键,着重考查了运算与求解能力,属于基础题9、C【解析】根据条件列关于首项与公比的方程组,即可解得公比,注意等比数列求和公式使用条件.【详解】等比数列中,,前三项之和,若,,,符合题意;若,则,解得,即公比的值为1或,故选:C【点睛】本题考查等比数列求和公式以及基本量计算,考查基本分析求解能力,属基础题.10、C【解析】由已知条件计算可得,即得到结果.【详解】由双曲线,可知渐近线方程为,又双曲线的一条渐近线与x轴的夹角为,故,即渐近线方程为.故选:C11、D【解析】求导判断函数的单调性即可求解【详解】的定义域为(0,+∞),,令,得x=1,当x∈(0,1)时,,单调递减,当x∈(1,e)时,,单调递增,故在x=1处取得极小值.故选:D.12、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将原式子变形为:,将代入变形后的式子得到结果即可.【详解】将代入变形后的式子得到结果为故答案为:14、若,则【解析】否定原命题条件和结论,并将条件与结论互换,即可写出逆否命题.【详解】由逆否命题的定义知:原命题的逆否命题为“若,则”.故答案为:若,则.15、【解析】直接利用等差数列前项和公式和等差数列的性质求解即可.【详解】由已知条件得,故答案为:.16、【解析】由,判断出函数的单调性,利用单调性解即可【详解】设,又有成立,函数,即是上的增函数,,即,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在【解析】(1)利用“退作差”法求得的通项公式.(2)利用裂项求和法求得,由此求得.【小问1详解】依题意①,当时,.当时,②,①-②得,,时,上式也符合.所以.【小问2详解】.所以.故存在实数,使得对任意恒成立.18、(1)2;(2).【解析】(1)利用正弦定理以及逆用两角和的正弦公式得出,而,即可求出的值;(2)根据题意,由余弦定理得,再根据基本不等式求得,当且仅当时取得等号,即可求出面积的最大值.【小问1详解】解:由题意得,由正弦定理得:,即,即,因为,所以【小问2详解】解:由余弦定理,即,由基本不等式得:,即,当且仅当时取得等号,,所以面积的最大值为19、(1)圆心为,半径为;(2)答案见解析.【解析】(1)写出圆标准方程即得解;(2)选择条件①:直线应过圆心即直线过点和,即得解;选择条件②:直线应与垂直,求出直线的方程即得解;选择条件③:不存在满足条件的直线.【小问1详解】解:由圆的方程整理可得,所以圆心为,半径为.小问2详解】选择条件①:若直线被圆所截得的弦长最长,则直线应过圆心即直线过点和,所以直线的斜率为,则直线的方程为.选择条件②:若直线过点被圆所截得的弦长最短,则直线应与垂直.又,所以.故直线方程为.选择条件③:经过点的直线被圆所截得的最短弦长,由于,所以不存在满足条件的直线.20、(1),;(2)【解析】(1)根据题意以m表示出,由即可求出,进而求出;(2)根据等差数列和等比数列的通项公式求出,再利用错位相减法即可求出.【详解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,当时,,又,,满足,,,两式相减得,.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.21、(1);(2)【解析】(1)首先将命题,化简,然后由为真可得,均为真,取交集即可求出实数的取值范围;(2)将是的充分不必要条件转化为是的必要不充分条件,进而将问题转化为,从而求出实数的取值范围【详解】(1)若命题为真,则,解得,当时,命题,若命题为真,则,解得,所以,因为为真,所以,均为真,所以,所以,所以实数的取值范围为(2)因为是的充分不必要条件,所以是的必要不充分条件,所以,所以或,所以,所以实数的取值范围是【点睛】本题主要考查根据真值表判断复合命题中的单个命题的真假,根据充分不必要条件求参数的取值范围,同时考查一元二次不等式的解法,分式不等式的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国美容油多效合一带货能力测评报告
- 2025中国美妆行业柔性供应链构建与快速响应机制报告
- 2025中国美妆代工厂技术能力与品牌合作模式报告
- 2026年中国移动γ辐射监测仪项目经营分析报告
- 2026年中国自动体外除颤仪(AED)项目经营分析报告
- 家电维修技师绩效考核方案及细则
- 传染疾病防控与报告流程标准
- 幼儿园混龄教学创新实践报告
- 2026年中国多模泵模块组行业市场前景预测及投资价值评估分析报告
- 宠物眼内异物取出器创新创业项目商业计划书
- 污泥暂存间管理制度
- 水稳层施工工艺流程及质量控制措施
- 心血管-肾脏-代谢综合征(CKM)综合管理中国专家共识2025解读课件
- 品种试验试种协议书
- 超市台账管理制度
- ICU患者体位管理
- 2025年低压电工职业技能竞赛参考试题(附答案)
- 运动素质知到课后答案智慧树章节测试答案2025年春浙江大学
- 垫片基础知识培训课件
- 《脑卒中与高血压关联分析》课件
- GB/T 45022-2024轨道交通机车车辆变流设备充电机
评论
0/150
提交评论