2026届湖北安陆一中高二上数学期末经典试题含解析_第1页
2026届湖北安陆一中高二上数学期末经典试题含解析_第2页
2026届湖北安陆一中高二上数学期末经典试题含解析_第3页
2026届湖北安陆一中高二上数学期末经典试题含解析_第4页
2026届湖北安陆一中高二上数学期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北安陆一中高二上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.2.已知直线过点,且与直线垂直,则直线的方程是()A. B.C. D.3.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.24.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③5.如图,在三棱锥中,,二面角的正弦值是,则三棱锥外接球的表面积是()A. B.C. D.6.直线且的倾斜角为()A. B.C. D.7.已知抛物线的焦点为,为抛物线上一点,为坐标原点,且,则()A.4 B.2C. D.8.已知双曲线的离心率为,则的渐近线方程为A. B.C. D.9.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-110.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.11.以原点为对称中心的椭圆焦点分别在轴,轴,离心率分别为,直线交所得的弦中点分别为,,若,,则直线的斜率为()A. B.C. D.12.过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条 B.2条C.3条 D.4条二、填空题:本题共4小题,每小题5分,共20分。13.若平面内两定点A,B间的距离为2,动点P满足,则的最小值为_________.14.已知数列满足,则=________.15.已知数列则是这个数列的第________项.16.椭圆的左、右焦点分别为,,为坐标原点,则以下说法正确的是()A.过点的直线与椭圆交于,两点,则的周长为8B.椭圆上存在点,使得C.椭圆的离心率为D.为椭圆上一点,为圆上一点,则点,的最大距离为3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在空间四边形中,分别是的中点,分别在上,且(1)求证:四点共面;(2)设与交于点,求证:三点共线.18.(12分)已知椭圆M:的离心率为,左顶点A到左焦点F的距离为1,椭圆M上一点B位于第一象限,点B与点C关于原点对称,直线CF与椭圆M的另一交点为D(1)求椭圆M的标准方程;(2)设直线AD的斜率为,直线AB的斜率为.求证:为定值19.(12分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域20.(12分)已知数列的前n项和为,且(1)求证:数列为等比数列;(2)记,求数列的前n项和为21.(12分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值22.(10分)已知直线过点(1)若直线与直线垂直,求直线的方程;(2)若直线在两坐标轴的截距相等,求直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,则,.所以当时,的最小值为.故选D.2、D【解析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线方程【详解】因为直线与直线垂直,所以设直线方程为,因为直线过点,所以,得,所以直线方程为,故选:D3、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.4、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.5、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判断出,且两两垂直,由此将三棱锥补形成正方体,利用正方体的外接球半径,求得外接球的表面积.【详解】设是的中点,连接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以两两垂直.由此将三棱锥补形成正方体如下图所示,正方体的边长为2,则体对角线长为.设正方体外接球的半径为,则,所以外接球的表面积为,故选:.6、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.7、B【解析】依题意可得,设,根据可得,,根据为抛物线上一点,可得.【详解】依题意可得,设,由得,所以,,所以,,因为为抛物线上一点,所以,解得.故选:B.【点睛】本题考查了平面向量加法的坐标运算,考查了求抛物线方程,属于基础题.8、C【解析】,故,即,故渐近线方程为.【考点】本题考查双曲线的基本性质,考查学生的化归与转化能力.9、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D10、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C11、A【解析】分类讨论直线的斜率存在与不存在两种情况,联立直线与曲线方程,再根据,求解.【详解】设椭圆的方程分别为,,由可知,直线的斜率一定存在,故设直线的方程为.联立得,故,;联立得,则,.因为,所以,所以.又,所以,所以,所以,.故选:A.【点睛】此题利用设而不求的方法,找出、、、之间的关系,化简即可得到的值.此题的难点在于计算量较大,且容易计算出错.12、B【解析】利用几何法,结合双曲线的几何性质,得出符合条件的结论.【详解】由双曲线的方程可知其渐近线方程为y=±x,则点P(2,1)在渐近线y=x上,又双曲线的右顶点为A(2,0),如图所示.满足条件的直线l有两条:x=2,y-1=-(x-2)【点睛】该题考查的是有关直线与双曲线的公共点有一个的条件,结合双曲线的性质,结合图形,得出结果,属于中档题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立直角坐标系,设出P的坐标,求出轨迹方程,然后推出的表达式,转化求解最小值即可.【详解】以经过A,B的直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系.则设,由,则,所以两边平方并整理得,所以P点的轨迹是以(3,0)为圆心,为半径的圆,所以,,则有,则的最小值为.故答案为:.14、4【解析】根据对数的运算性质得,可得,即数列是以2为公比的等比数列,代入等比数列的通项公式化简可得值.【详解】因为,所以,即数列是以2为公比的等比数列,所以.故答案为:4.【点睛】本题考查等比数列的定义和通项公式以及对数的运算性质,熟练运用相应的公式即可,属于基础题.15、12【解析】根据被开方数的特点求出数列的通项公式,最后利用通项公式进行求解即可.【详解】数列中每一项被开方数分别为:6,10,14,18,22,…,因此这些被开方数是以6为首项,4为公差的等差数列,设该等差数列为,其通项公式为:,设数列为,所以,于是有,故答案为:16、ABD【解析】结合椭圆定义判断A选项的正确性,结合向量数量积的坐标运算判断B选项的正确性,直接法求得椭圆的离心率,由此判断C选项的正确性,结合两点间距离公式判断D选项的正确性.【详解】对于选项:由椭圆定义可得:,因此的周长为,所以选项正确;对于选项:设,则,且,又,,所以,,因此,解得,,故选项正确;对于选项:因为,,所以,即,所以离心率,所以选项错误;对于选项:设,,则点到圆的圆心的距离为,因为,所以,所以选项正确,故选:ABD三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)根据题意,利用中位线定理和线段成比例,先证明,进而证明问题;(2)先证明平面,平面,进而证明点P在两个平面的交线上,然后证得结论.【小问1详解】连接分别是的中点,.在中,.所以四点共面.【小问2详解】,所以,又平面平面,同理:,平面平面,为平面与平面的一个公共点.又平面平面,即三点共线.18、(1)(2)证明见解析【解析】(1)根据椭圆离心率公式,结合椭圆的性质进行求解即可;(2)设出直线CF的方程与椭圆方程联立,根据斜率公式,结合一元二次方程根与系数关系进行求解即可.【小问1详解】(1),,∴,,,∴;【小问2详解】设,,则,CF:联立∴,∴【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.19、(1)单调递增区间为,单调递减区间为;(2)【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出函数的极值点,从而求出函数的最值即可【详解】解:(1)由题意得,,令,得,令,得或,故函数的单调递增区间为,单调递减区间为(2)易知,因为,所以(或由,可得),又当时,,所以函数在区间上的值域为【点睛】确定函数单调区间的步骤:第一步,确定函数的定义域;第二步,求;第三步,解不等式,解集在定义域内的部分为单调递增区间;解不等式,解集在定义域内的部分为单调递减区间20、(1)证明见解析;(2).【解析】(1)由已知得,当时,两式作差整理得,根据等比数列的定义可得证;(2)由(1)求得,,再运用错位相减法可求得答案.【小问1详解】证明:因为,……①,所以当时,,当时……②,则①-②可得,所以,因为,所以数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,即,因为所以,则……①,①得……②,①-②得,所以.21、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算向量的数量积,,根据数量积结果为零,证明线线垂直,进而证明线面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根据向量的夹角公式即可求解.【小问1详解】证明:因为平面ABCD,平面ABCD,平面ABCD,所以,,又因为,则以A为坐标原点,分别以AB、AD、AP所在的直线为x、y、z轴建立空间直角坐标系,则,,,,,,,,,则,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小问2详解】解:由(1)可知平面PAC,可作为平面PAC的法向量,设平面PCD的法向量,因为,所以,即,不妨设,得,又由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论