湖北省十堰市张湾区东风高中2025年数学高二第一学期期末检测模拟试题含解析_第1页
湖北省十堰市张湾区东风高中2025年数学高二第一学期期末检测模拟试题含解析_第2页
湖北省十堰市张湾区东风高中2025年数学高二第一学期期末检测模拟试题含解析_第3页
湖北省十堰市张湾区东风高中2025年数学高二第一学期期末检测模拟试题含解析_第4页
湖北省十堰市张湾区东风高中2025年数学高二第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省十堰市张湾区东风高中2025年数学高二第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)2.试在抛物线上求一点,使其到焦点的距离与到的距离之和最小,则该点坐标为A. B.C. D.3.函数在的最大值是()A. B.C. D.4.已知命题p:,,则命题p的否定为()A, B.,C., D.,5.双曲线的焦距是()A.4 B.C.8 D.6.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.7.设函数在定义域内可导,的图像如图所示,则导函数的图象可能为()A. B.C. D.8.在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A. B.C. D.或9.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.10.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.11.已知抛物线y2=4x的焦点为F,定点,M为抛物线上一点,则|MA|+|MF|的最小值为()A.3 B.4C.5 D.612.在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________14.双曲线的左顶点为,虚轴的一个端点为,右焦点到直线的距离为,则双曲线的离心率为__________.15.若某几何体的三视图如图所示,则该几何体的体积是__________16.设椭圆的左,右焦点分别为,,过的直线l与C交于A,B两点(点A在x轴上方),且满足,则直线l的斜率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,直线(1)求证:直线与圆恒有两个交点;(2)设直线与圆的两个交点为、,求的取值范围18.(12分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值19.(12分)已知函数,其中常数,(1)求单调区间;(2)若且对任意,都有,证明:方程有且只有两个实根20.(12分)已知,两地的距离是.根据交通法规,,两地之间的公路车速(单位:)应满足.假设油价是7元/,以的速度行驶时,汽车的耗油率为,当车速为时,汽车每小时耗油,司机每小时的工资是91元.(1)求的值;(2)如果不考虑其他费用,当车速是多少时,这次行车的总费用最低?21.(12分)已知圆C的方程为.(1)直线l1过点P(3,1),倾斜角为45°,且与圆C交于A,B两点,求AB的长;(2)求过点P(3,1)且与圆C相切的直线l2的方程.22.(10分)如图所示,在三棱柱中,平面,,,,点,分别在棱和棱上,且,,点为棱的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.2、A【解析】由题意得抛物线的焦点为,准线方程为过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时故点的纵坐标为1,所以横坐标.即点P的坐标为.选A点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决3、C【解析】利用函数单调性求解.【详解】解:因为函数是单调递增函数,所以函数也是单调递增函数,所以.故选:C4、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.5、C【解析】根据,先求半焦距,再求焦距即可.【详解】解:由题意可得,,∴,故选:C【点睛】考查求双曲线的焦距,基础题.6、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.7、D【解析】根据函数的单调性得到导数的正负,从而得到函数的图象.【详解】由函数的图象可知,当时,单调递增,则,所以A选项和C选项错误;当时,先增,再减,然后再增,则先正,再负,然后再正,所以B选项错误.故选:D.【点睛】本题主要考查函数的单调性和导数的关系,意在考查学生对该知识的掌握水平,属于基础题.一般地,函数在某个区间可导,,则在这个区间是增函数;函数在某个区间可导,,则在这个区间是减函数.8、B【解析】由韦达定理得a3a15=2,由等比数列通项公式性质得:a92=a3a15=a2a16=2,由此求出答案【详解】解:∵在等比数列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故选B【点睛】本题考查等比数列中两项积与另一项的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用9、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D10、C【解析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值点,然后判断选项即可【详解】解:由题意可知:和时,,函数是增函数,时,,函数是减函数;是函数的极大值点,是函数的极小值点;所以函数的图象只能是故选:C11、B【解析】作出图象,过点M作准线的垂线,垂足为H,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,求解即可【详解】过点M作准线的垂线,垂足为H,由抛物线的定义可知|MF|=|MH|,则问题转化为|MA|+|MH|的最小值,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,其最小值为.故选:B12、C【解析】设出长度,建立空间直角坐标系,根据向量求异面直线所成角即可.【详解】如下图所示,以,,所在直线方向,,轴,建立空间直角坐标系,设,,,,,,所以,,设异面直线,的夹角为,所以,所以,即异面直线,的夹角为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由,根据椭圆的定义,求出,,再由余弦定理,根据,即可列式求出离心率.【详解】因为点在椭圆上,所以,又,所以,因,在中,由,根据余弦定理可得,解得(负值舍去)故答案为:.【点睛】本题主要考查求椭圆的离心率,属于常考题型.14、【解析】根据双曲线左顶点和虚轴端点的定义,结合点到直线距离公式、双曲线的离心率公式进行求解即可.【详解】不妨设在纵轴的正半轴上,由双曲线的标准方程可知:,右焦点的坐标为,直线的方程为:,因为右焦点到直线的距离为,所以有,即双曲线的离心率为,故答案为:15、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:116、【解析】设出直线的方程并与椭圆方程联立,结合根与系数关系以及求得直线的斜率.【详解】椭圆,由于在轴上方且直线的斜率存在,所以直线的斜率不为,设直线的方程为,且,由,消去并化简得,设,,则①,②,由于,所以③,由①②③解得所以直线的方程为,斜率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据直线的方程可得直线经过定点,而点到圆心的距离小于半径,故点在圆的内部,由此即可证明结果(2)由圆的性质可知,当过圆心时,取最大值,当和过的直径垂直时,取最小值,由此即可求出结果.【小问1详解】证明:由于直线,即令,解得,所以恒过点,所以,所以点在圆内,所以直线与圆恒有两个交点;【小问2详解】解:当过圆心时,取最大值,即圆的直径,由圆的半径,所以的最大值为;当和过的直径垂直时,取最小值,此时圆心到的距离,所以,故的最小值为综上,的取值范围.18、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)求导数.求得切线方程,由切线与轴的交点在负半轴可得的范围;(Ⅱ)求导数,由的正负确定单调性,极值得最值【详解】命题意图本题主要考查导数在函数问题中的应用解析(Ⅰ)由题可知,,故可得的图象在点处的切线方程为令,可得由题意可得,即,解得,即的取值范围为(Ⅱ)当时,,易知在上单调递增又,当时,,此时单调递减,当时,,此时单调递增,无最大值【点睛】关键点点睛:本题考查用导数的几何意义,考查用导数求函数的的最值.解题关键是求出导函数,由的正负确定单调性,得函数的极值,从而可得最值19、(1)答案不唯一,具体见解析(2)证明见解析【解析】(1)求出函数的导数,谈论参数的范围,根据导数的正负,可得单调区间;(2)由已知可解得,构造函数,再根据(1)的结论,可知函数的单调性,结合零点存在定理,可证明结论.【小问1详解】定义域为,因为,若,,所以单调递减区间为,若,,当时,,当时,,所以单调递减区间为,单调递增区间为【小问2详解】证明:若且对任意,都有,则在处取得最小值,由(1)得在取得最小值,得,令,则单调性相同,单调递减区间为,单调递增区间为,且,,,所以在(1e2,所以在和各有且仅有一个零点,即方程有且只有两个实根20、(1);(2).【解析】(1)根据题中给出的车速和油耗之间的关系式,结合已知条件,待定系数即可;(2)根据题意求得以行驶所用时间,构造费用关于的函数,利用导数研究其单调性和最值,即可求得结果.【小问1详解】因为汽车以的速度行驶时,汽车的耗油率为,又当时,,解得.【小问2详解】若汽车的行驶速度为,则从地到地所需用时,则这次行车的总费用,则,令,解得,则当,,单调递减,即.故时,该次行车总费用最低.21、(1)(2)x=3或【解析】(1)首先利用点斜式求出直线的方程,再利用点到直线的距离公式求出圆心到直线的距离,最后利用垂直定理、勾股定理计算可得;(2)依题意可得点在圆外,分直线的斜率存在与不存在两种情况讨论,当直线的斜率不存在直线得到直线方程,但直线的斜率存在时设直线方程为,利用点到直线的距离公式得到方程,解得,即可得解;【小问1详解】解:根据题意,直线的方程为,即,则圆心到直线的距离为故;【小问2详解】解:根据题意,点在圆外,分两种情况讨论:当直线的斜率不存在时,过点的直线方程是,此时与圆C:相切,满足题意;当直线的斜率存在时,设直线方程为,即,直线与圆相切时,圆心到直线的距离为解得此时,直线的方程为,所以满足条件的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论