版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年江苏省吴江平望中学高二上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2 B.3C.6 D.92.已知数列{an}的前n项和为Sn,满足a1=1,-=1,则an=()A.2n-1 B.nC.2n-1 D.2n-13.函数在的最大值是()A. B.C. D.4.设正数数列的前项和为,数列的前项积为,且,则()A. B.C. D.5.有这样一道题目:“戴氏善屠,日益功倍.初日屠五两,今三十日屠讫,向共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?"在这个问题中,该屠夫前5天所屠肉的总两数为()A.35 B.75C.155 D.3156.函数的单调递减区间是()A. B.C. D.7.已知抛物线,则抛物线的焦点到其准线的距离为()A. B.C. D.8.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.9.椭圆的焦点为、,上顶点为,若,则()A B.C. D.10.下列椭圆中,焦点坐标是的是()A. B.C. D.11.在等比数列中,是和的等差中项,则公比的值为()A.-2 B.1C.2或-1 D.-2或112.给出下列结论:①如果数据的平均数为3,方差为0.2,则的平均数和方差分别为14和1.8;②若两个变量的线性相关性越强,则相关系数r的值越接近于1.③对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是().A.3 B.2C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的离心率是______14.若直线与直线平行,则实数m的值为____________15.已知直线与圆:交于、两点,则的面积为______.16.已知数列的通项公式为,,设是数列的前n项和,若对任意都成立,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围18.(12分)已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,直线经过,倾斜角为与双曲线交于两点,求的面积.19.(12分)已知数列的前项和为,若.(1)求的通项公式;(2)设,求数列的前项和.20.(12分)已知函数(1)讨论函数的单调性;(2)若函数有两个零点,,证明:21.(12分)已知等比数列满足,(1)求数列通项公式;(2)记,求数列的前n项和22.(10分)已知双曲线C:的离心率为,过点作垂直于x轴的直线截双曲线C所得弦长为(1)求双曲线C的方程;(2)直线()与该双曲线C交于不同的两点A,B,且A,B两点都在以点为圆心的同一圆上,求m的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等2、A【解析】由题可得,利用与的关系即求.【详解】∵a1=1,-=1,∴是以1为首项,以1为公差的等差数列,∴,即,∴当时,,当时,也适合上式,所以故选:A.3、C【解析】利用函数单调性求解.【详解】解:因为函数是单调递增函数,所以函数也是单调递增函数,所以.故选:C4、B【解析】当可求得;当时,可证得数列为等差数列,利用等差数列通项公式可推导得到,由求得后,利用可求得结果.【详解】当时,,解得:;当时,由得:,即,,数列是以为首项,为公差的等差数列,,解得:,,经检验:满足,,故选:B.5、C【解析】构造等比数列模型,利用等比数列的前项和公式计算可得结果.【详解】由题意可得该屠夫每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此前5天所屠肉的总两数为.故选:C.【点睛】本题考查了等比数列模型,考查了等比数列的前项和公式,属于基础题.6、D【解析】求导后,利用求得函数的单调递减区间.【详解】解:,则,由得,故选:D.7、D【解析】将抛物线方程化为标准方程,由此确定的值即可.【详解】由可得抛物线标准方程为:,,抛物线的焦点到其准线的距离为.故选:D.8、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D9、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.10、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B11、D【解析】由题可得,即求.【详解】由题意,得,所以,因为,所以,解得或.故选:D.12、B【解析】对结论逐一判断【详解】对于①,则的平均数为,方差为,故①正确对于②,若两个变量的线性相关性越强,则相关系数r的绝对值越接近于1,故②错误对于③,对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为,故③正确故正确结论为2个故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出、、的值,即可得出椭圆的离心率.【详解】在椭圆中,,,,因此,椭圆的离心率是.故答案为:.14、【解析】利用两条直线平行的充要条件,列式求解即可【详解】解:因为直线与直线平行,所以,解得故答案为:15、2【解析】用已知直线方程和圆方程联立,可以求出交点,再分析三角形的形状,即可求出三角形的面积.【详解】由圆C方程:可得:;即圆心C的坐标为(0,-1),半径r=2;联立方程得交点,如下图:可知轴,∴是以为直角的直角三角形,,故答案为:2.16、【解析】化简数列将问题转化为不等式恒成立问题,再对n分奇数和偶数进行讨论,分别求解出的取值范围,最后综合得出结果.【详解】根据题意,,.①当n是奇数时,,即对任意正奇数n恒成立,当时,有最小值1,所以.②当n是正偶数时,,即,又,故对任意正偶数n都成立,又随n增大而增大,当时,有最小值,即,综合①②可知.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由对数函数性质,转化为对任意的恒成立,结合二次函数的性质,即可求解;(2)利用基本不等式,求得当命题是真命题,得到,结合“”为真命题,“”为假命题,分类讨论,即可求解.【小问1详解】解:因为是真命题,所以对任意的恒成立,当时,不等式,显然在不能恒成立;当时,则满足解得,故实数的取值范围为【小问2详解】解:因为,所以,当且仅当时,等号成立若是真命题,则;因为“”为真命题,“”为假命题,所以与一真一假当真假时,所以;当假真时,所以,综上,实数的取值范围为18、(1);(2).【解析】(1)由两条双曲线有共同渐近线,可令双曲线方程为,求出即可得双曲线的方程;(2)根据已知有直线为,由其与双曲线的位置关系,结合弦长公式、点线距离公式及三角形面积公式求的面积.【详解】(1)设所求双曲线方程为,代入点得:,即,∴双曲线方程为,即.(2)由(1)知:,即直线方程为.设,联立得,满足且,,由弦长公式得,点到直线的距离.所以【点睛】本题考查了双曲线,根据双曲线共渐近线求双曲线方程,由直线与双曲线的相交位置关系求原点与交点构成三角形的面积,综合应用了弦长公式、点线距离公式、三角形面积公式,属于基础题.19、(1)(2)【解析】(1)根据所给条件先求出首项,然后仿写,作差即可得到的通项公式;(2)根据(1)求出的通项公式,观察是由一个等差数列加上一个等比数列得到,要求其前项和,采用分组求和法结合公式法可求出前项和【小问1详解】当时,,解得;当时,,∴,化简得,∴是首项为1,公比为2的等比数列,∴,因此的通项公式为.【小问2详解】由(1)得,∴,∴,∴20、(1)函数的单调性见解析;(2)证明见解析.【解析】(1)求出函数的导数,按a值分类讨论判断的正负作答.(2)将分别代入计算化简变形,再对所证不等式作等价变形,构造函数,借助函数导数推理作答.【小问1详解】已知函数的定义域为,,当时,恒成立,所以在区间上单调递增;当时,由,解得,由,解得,的单调递增区间为,单调递减区间为,所以,当时,在上单调递增,当时,在上单调递增,在上单调递减.【小问2详解】依题意,不妨设,则,,于是得,即,亦有,即,因此,,要证明,即证,即证,即证,即证,令,,,则有在上单调递增,,,即成立,所以.【点睛】思路点睛:涉及双变量的不等式证明问题,将所证不等式等价转化,构造新函数,再借助导数探讨函数的单调性、极(最)值问题处理.21、(1)(2)【解析】(1)通过基本量列方程组可得;(2)由裂项相消法可解【小问1详解】由题意得解得,所以数列的通项公式为【小问2详解】由(1)知,则所以22、(1)(2)或【解析】(1)利用双曲线离心率、点在双曲线上及得到关于、、的方程组,进而求出双曲线的标准方程;(2)联立直线和双曲线的方程,得到关于的一元二次方程,利用直线和双曲线的位置关系、根与系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024秋季创意美术第5节课《柿柿如意》
- 1乾坤扶阳艾灸入门培训46
- 《LED发光二极管》课件
- 智能制造系统测试实战指南与答案
- 心肺复苏假人测试题及答案
- 新时代背景下的工业项目测试发展趋势分析预测报告
- 职场人际关系的心理策略测试及答案参考
- 幼儿园科学试卷及答案分析
- 幼儿园教育案例分析题库
- 20225年绥化仲裁委员会招聘1人笔试考试参考试题及答案解析
- 2025河南省农业信贷担保有限责任公司秋季专场招聘28人考试笔试备考试题及答案解析
- 西藏养老护理考试题库大全及答案解析
- 2025年河北省高职单招考试六类职业适应性测试(综合)
- 2025消防宣传月专题培训
- 水冷无功补偿安置施工方案
- 村报账员基础知识培训课件
- 企业风险管理评估表全面覆盖版
- 烟叶种植基础知识培训课件
- 2025内初班语文试卷及答案
- 园林机械维修培训知识课件
- 榨季运输安全培训简讯课件
评论
0/150
提交评论