数学苏教七年级下册期末复习重点中学试卷经典答案_第1页
数学苏教七年级下册期末复习重点中学试卷经典答案_第2页
数学苏教七年级下册期末复习重点中学试卷经典答案_第3页
数学苏教七年级下册期末复习重点中学试卷经典答案_第4页
数学苏教七年级下册期末复习重点中学试卷经典答案_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学苏教七年级下册期末复习重点中学试卷经典答案一、选择题1.下列运算正确的是()A. B.C. D.2.下列四个图形中,和是内错角的是()A. B. C. D.3.已知关于的方程组,给出下列结论:①当互为相反数时,;②当时解得为的2倍;③不论取什么实数,的值始终不变;④使为自然数的的值共有4个.上述结论正确的有()A.①③ B.②④ C.①②③ D.①③④4.若x>y,则下列不等式中成立的是()A.x-1<y-1 B.2x<2y C. D.-3x<-3y5.若不等式的解为,则m的值是()A.m=-1 B.m=0 C.m=1 D.m=36.下列命题:①同旁内角互补;②若,则;③对顶角相等;④三角形的外角和360°;⑤如果一个角的两边分别垂直于另一个角的两边,那么这两个角互补:其中真命题的个数有()个A.4个 B.3个 C.2个 D.1个7.有一列按一定规律排列的式子:﹣3m,9m,﹣27m,81m,﹣243m,…,则第n个式子是()A.(﹣3)nm B.(﹣3)n+1m C.3nm D.﹣3nm8.如图,的角平分线、相交于F,,,且于G,下列结论:①;②平分;③;④.其中正确的结论是()A.①③④ B.①②③ C.②④ D.①③二、填空题9.计算:-3a·2ab=________;10.用一组数,,说明命题“若,则”是假命题,则,,可以______.11.如图,正五边形和正六边形有一条公共边,并且正五边形在正六边形内部,连接并延长,交正六边形于点,则______.12.一个长方形的长为,宽为,面积为,且满足,则长方形的周长为_________.13.把方程组中,若未知数满足,则的取值范围是_________.14.如图,在直角△ABC中,∠BAC=90°,AB=6,AC=8,BC=10,∠ABC的平分线交AC于点D,点E、F分别是BD、AB上的动点,则AE+EF的最小值为____________15.将正三角形、正方形、正五边形,按如图所示的位置摆放,且每一个图形的一个顶点都在另一个图形的一条边上,则__________度.16.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠BFD=45°;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是______(填序号).17.计算:(1).(2).18.因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.19.解方程组:(1)(2)20.解不等式组,并在数轴上表示出不等式组的解集.三、解答题21.如图,BE平分∠ABC,EB∥CD,∠ABC=2∠1.判断直线AD与BC的位置关系,并说明理由.22.某地上网有两种收费方式,用户可以任选其一:(A)计时制:2.8元/时;(B)包月制:60元/月;此外,每一种上网方式都加收通信费1.2元/时.(1)某用户每月上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(一个月),选用哪种上网方式合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式.23.某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:购票张数1~50张51~100张100张以上每张票的价格12元10元8元原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?24.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)25.如图1,直线m与直线n相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)若∠BAO=50º,∠ABO=40º,求∠ACB的度数;(2)如图2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其度数(用含α的代数式表示);(3)如图3,若直线m与直线n相互垂直,延长AB至E,已知∠ABO、∠OBE的角平分线与∠BOQ的角平分线及延长线分别相交于D、F,在△BDF中,如果有一个角是另一个角的3倍,请直接写出∠BAO的度数.【参考答案】一、选择题1.D解析:D【分析】根据单项式乘多项式、幂的乘方运算法则、完全平方公式以及同底数幂的除法运算法则计算得出答案.【详解】解:A、a(a+1)=a2+a,故此选项错误;B、(a2)3=a6,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、a5÷a2=a3,故此选项正确;故选:D.【点睛】此题主要考查了单项式乘多项式、幂的乘方运算法则、完全平方公式以及同底数幂的除法,正确掌握运算法则是解题关键.2.C解析:C【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A、∠1与∠2不是内错角,选项错误,不符合题意;B、∠1与∠2不是内错角,选项错误,不符合题意;C、∠1与∠2是内错角,选项正确,符合题意;D、∠1和∠2不是内错角,选项错误,不符合题意;故选:C.【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.3.D解析:D【分析】由已知可得x+y=0,所以2+a=0,即可求a=−2,故①正确;将a=−5代入方程组得,解方程组即可确定②不正确;解方程组得x=2a−2,y=4−a,则x+2y=6,故③正确;由题意可知,x=2a−2≥0时,a≥1,y=4−a≥0时,a≤4,则1≤a≤4,所以当a=1,2,3,4时,x、y的值为自然数,故④正确.【详解】解:当x,y互为相反数时,x+y=0,∴2+a=0,∴a=−2,故①正确;当a=−5时,方程组为,①+②得,x=−12,将x=−12代入①得,y=9,∴方程组的解为,故②不正确;,①+②得,x=2a−2,将x=2a−2代入①,得y=4−a,∴x+2y=2a−2+8−2a=6,故③正确;由③得,x=2a−2≥0时,a≥1,y=4−a≥0时,a≤4,∴1≤a≤4,∴当a=1,2,3,4时,x、y的值为自然数,∴使x,y为自然数的a的值共有4个,故④正确;故选:D.【点睛】本题考查含参数的二元一次方程组的解以及解不等式,熟练掌握二元一次方程组的解法是解题的关键.4.D解析:D【分析】根据不等式的性质逐一进行判断即可.【详解】解:A.∵x>y,∴x-1>y-1,故不合题意;B.∵x>y,∴2x>2y,故不合题意;C.∵x>y,∴,故不合题意;D.∵x>y,∴-3x<-3y,故符合题意;故选:D.【点睛】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.5.C解析:C【分析】根据不等式的运算法则可得,因为,所以可得,进而求解即可.【详解】原不等式的解为解得m=1故选C.【点睛】本题主要考查含参数不等式的运算,关键是根据不等式的性质来得到,再根据题意建立含参数的方程,进而求解问题的答案.6.C解析:C【解析】【分析】根据对顶角的性质、平行线的性质、多边形的外角和定理等知识判断.【详解】①两直线平行,同旁内角互补,错误,是假命题;②若|a|=|b|,则a=±b,故错误,是假命题;③对顶角相等,正确,是真命题;④三角形的外角和为360°,正确,是真命题;⑤如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补,故错误,是假命题;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.A解析:A【分析】根据观察,可发现规律:系数是(−3)n,字母因式均为m,可得答案.【详解】由﹣3m,9m,﹣27m,81m,﹣243m,…,得出规律:系数分别是(﹣3)1,(﹣3)2,(﹣3)3,(﹣3)4,(﹣3)5,…,字母因式均为m,∴第n个式子是(﹣3)nm;故选:A.【点睛】本题考查了单项式,观察式子发现规律是解题关键.8.A解析:A【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故本选项正确;②无法证明CA平分∠BCG,故本选项错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故本选项正确;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,故本选项正确.故选:A.【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.二、填空题9.-6a2b【分析】根据单项式乘单项式法则计算求解即可.【详解】解:-3a•2ab=(-3×2)•(a•a)•b=-6a2b.故答案为:-6a2b.【点睛】此题考查了单项式乘单项式,熟记单项式乘单项式法则是解题的关键.10.例如1,2,(符合条件即可)【分析】由不等式的基本性质进行判断,即可得到答案.【详解】解:当,时,∴是真命题;当,时,∴是假命题;∴,,可以为:1、2、.故答案为:例如1,2,(符合条件即可).【点睛】本题考查了不等式的基本性质,以及判断命题的真假,解题的关键是掌握不懂呢过是的基本性质进行判断.11.A解析:84【分析】据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【详解】解:正五边形的内角是∵AB=BC,∴∠CAB=36°,正六边形的内角是∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°-120°-120°-36°=84°,故答案为84.【点睛】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.12.12【分析】根据题意可得ab=8,代入,求出a+b,故可得到周长.【详解】∵一个长方形的长为,宽为,面积为,∴ab=8,∵∴a+b=6故长方形的周长为2(a+b)=12故答案为:12.【点睛】此题主要考查因式分解的应用,解题的关键是熟知提取公因式法因式分解.13.【分析】先将方程组中的两个方程相加化简得出的值,再根据可得关于m的一元一次不等式,然后解不等式即可得.【详解】,由①②得:,即,,,解得,故答案为:.【点睛】本题考查了二元一次方程组的解、解一元一次不等式,根据二元一次方程组得出的值是解题关键.14.F解析:【分析】作点F关于BD的对称点G,连接EG,过点A作交于点H,由作图和结合已知条件分析得知:当A、E、G三点共线时,即与AH重合时,此时的值最小,最小值为AH的长,在中,,,,,由,可求得AH的值,即得到答案.【详解】如图所示,作点F关于BD的对称点G,连接EG,过点A作交于点H,∵BD平分∴由作图可得:∵∴由点到直线的垂线段最短可知:当A、E、G三点共线时,即与AH重合时,此时的值最小,最小值为AH的长,在中,,,,∴即解得:则的最小值为故答案为:【点睛】本题主要考查轴对称最短问题、垂线段最短问题、角平分线的性质等知识点,解题的关键是学会用转化的思想思考问题,其中借助面积法进行计算要求能够熟练运用,属于中考常考题型.15.102°【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每个内角为6解析:102°【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每个内角为60°,所以,,,因为,所以可得.故答案为102°.【点睛】本题主要考查三角形内角和、正多边形的内角,关键是根据图形得到角之间的等量关系,然后利用三角形内角和进行求解即可.16.①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B解析:①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④.【详解】解:∵EG∥BC,且CG⊥EG于G,∴∠BCG+∠G=180°,∵∠G=90°,∴∠BCG=180°﹣∠G=90°,∵GE∥BC,∴∠GEC=∠BCA,∵CD平分∠BCA,∴∠GEC=∠BCA=2∠DCB,∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=(∠BCA+∠ABC)=45°,∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.17.(1)-6a2b2c;(2)3.【分析】(1)直接运用单项式乘单项式运算法则计算即可;(2)先运用负整数次幂、零次幂化简,然后再计算即可.【详解】解(1)原式=-6a2b2c;(2)原解析:(1)-6a2b2c;(2)3.【分析】(1)直接运用单项式乘单项式运算法则计算即可;(2)先运用负整数次幂、零次幂化简,然后再计算即可.【详解】解(1)原式=-6a2b2c;(2)原式=(-2)2-1=4-1=3.【点睛】本题主要考查了单项式乘单项式、负整数次幂、零次幂等知识点,灵活运用相关运算法则成为解答本题的关键.18.(1)2b(a-2b)2;(2)(m﹣n)(a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因解析:(1)2b(a-2b)2;(2)(m﹣n)(a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因式即可;(2)先提取(m﹣n),再利用平方差公式分解因式即可;(3)利用平方差公式分解因式,即可;(4)先用完全平方公式分解因式,再用平方差公式分解因式即可.【详解】解:(1)原式=2b(a2-4ab+4b2)=2b(a2-4ab+4b2)=2b(a-2b)2;(2)原式=a2(m﹣n)-9(m﹣n)=(m﹣n)(a2-9)=(m﹣n)(a+3)(a-3);(3)原式=(9x2﹣4)(9x2+4)=(3x+2)(3x-2)(9x2+4);(4)原式=[(m2+5)-6]2=(m2-1)2=(m+1)2(m-1)2.【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键.19.(1);(2)【分析】(1)方程组利用加减消元法求解即可;(2)方程组整理后,先求解y,代入求解x即可.【详解】解:(1),①×3-②得:,解得:,代入①中,解得:,∴方程组的解为解析:(1);(2)【分析】(1)方程组利用加减消元法求解即可;(2)方程组整理后,先求解y,代入求解x即可.【详解】解:(1),①×3-②得:,解得:,代入①中,解得:,∴方程组的解为:;(2)方程组整理得:,解②得:,代入①中,解得:,∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20..在数轴上表示见解析【分析】分别解不等式组中的两个不等式,再把两个不等式的解集在数轴上表示出来,确定解集的公共部分,从而可得答案.【详解】解:由①得:由②得:在数轴上分别表示①解析:.在数轴上表示见解析【分析】分别解不等式组中的两个不等式,再把两个不等式的解集在数轴上表示出来,确定解集的公共部分,从而可得答案.【详解】解:由①得:由②得:在数轴上分别表示①②的解集如下:所以不等式组的解集为:【点睛】本题考查的是解不等式组,在数轴上表示不等式组的解集,掌握解不等式组的方法与步骤是解题的关键.三、解答题21.AD//BC,见解析【分析】根据角平分线的性质可得,由,等量代换可得,利用平行线的性质定理可得,易得,由平行线的判定定理可得结论.【详解】解:.理由:平分,,,,,,,,.解析:AD//BC,见解析【分析】根据角平分线的性质可得,由,等量代换可得,利用平行线的性质定理可得,易得,由平行线的判定定理可得结论.【详解】解:.理由:平分,,,,,,,,.【点睛】本题主要考查了角平分线的定义,平行线的性质定理和判定定理,得出是解答此题的关键.22.(1)选择A种方式比较合算;(2)选择B种方式比较合算;(3)上网时间t=小时,两种方式一样合算;当上网时间t<小时,选用A种方式合算;当上网时间t>小时,选用B种方式合算【分析】(1)设用户上解析:(1)选择A种方式比较合算;(2)选择B种方式比较合算;(3)上网时间t=小时,两种方式一样合算;当上网时间t<小时,选用A种方式合算;当上网时间t>小时,选用B种方式合算【分析】(1)设用户上网的时间为t小时,分别用t表示出两种收费方式,代入时间20小时,分别计算,对比分析即可.(2)将120分别代入两种收费方式的表达式中,求得各自的时间,对比分析即可.(3)令两种方式的关系式分别相等,大于或小于,分类讨论即可.【详解】解:(1)设用户上网的时间为t小时,则A种方式的费用为2.8t+1.2t=4t元;B种方式的费用为(60+1.2t)元,当t=20时,4t=80,60+1.2t=84,因为80<84,所以选择A种方式比较合算;(2)若用户有120元钱上网,由题意:,分别解得,因为30<50,所以用户选择B种方式比较合算;(3)当两种方式费用相同时,即,解得t=,所以此时选择两种方式一样合算;令,解得,所以当上网时间t<时,选用A种方式合算;令,解得,所以当上网时间t>时,选用B种方式合算.【点睛】本题考察一元一次不等式与一次函数在方案类问题中的实际应用,根据题意列出函数关系并讨论是解题重点.23.(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元【分析】(1)设一班人有x人,则二班有y人,根据两班分别购票的费用为1136元建立方程,求出其解;解析:(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元【分析】(1)设一班人有x人,则二班有y人,根据两班分别购票的费用为1136元建立方程,求出其解;(2)根据表格中的数据和(1)中结果,可知两个班一起购买最省钱,从而可以求得省多少钱.【详解】解:(1)设初一(1)班有x人,初一(2)班有y人,可得:,化简为:且,,根据方程代入试算可得:当初一(1)班有48人时,,;当初一(1)班有43人时,,,;所以,初一(2)班共有53人或59人;(2)两个班一起买票更省钱,根据题意及表中数据可得,两个班级合起来超过100人,每张票的价格为8元,①,;②,.∴这样比原计划节省298元或290元.【点睛】题目主要考查二元一次方程的应用,明确题意,列出相应方程,根据方程的知识解决问题是解题关键.24.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论