2025-2026学年辽宁省凌源市第三高级中学数学高二上期末达标检测模拟试题含解析_第1页
2025-2026学年辽宁省凌源市第三高级中学数学高二上期末达标检测模拟试题含解析_第2页
2025-2026学年辽宁省凌源市第三高级中学数学高二上期末达标检测模拟试题含解析_第3页
2025-2026学年辽宁省凌源市第三高级中学数学高二上期末达标检测模拟试题含解析_第4页
2025-2026学年辽宁省凌源市第三高级中学数学高二上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025-2026学年辽宁省凌源市第三高级中学数学高二上期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在处的切线方程为()A. B.C. D.2.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元3.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B=45°,cosA=,则b等于()A. B.C. D.4.将直线绕着原点逆时针旋转,得到新直线的斜率是()A. B.C. D.5.函数f(x)=-1+lnx,对∀x0,f(x)≥0成立,则实数a的取值范围是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)6.已知数列满足,则()A. B.C. D.7.已知等比数列{an}中,,,则()A. B.1C. D.48.设的内角A,B,C的对边分别为a,b,c,已知,,,则b等于()A. B.2C. D.49.已知抛物线=的焦点为F,M、N是抛物线上两个不同的点,若,则线段MN的中点到y轴的距离为()A.8 B.4C. D.910.已知一个圆锥的体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.11.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.2812.设aR,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_______.14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件.为检验产品的质量,现用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件15.已知等差数列的前n项和为,,则___________.16.已知一组数据的平均数为4,方差为3,若另一组数据的平均数为10,则该组数据的方差为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数在点处的切线方程;(2)求函数的单调区间及极值18.(12分)已知函数在与处都取得极值.(1)求a,b的值;(2)若对任意,不等式恒成立,求实数c的取值范围.19.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0的交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程20.(12分)若存在实常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线y=kx+b为和的“隔离直线”.已知函数,.(1)证明函数在内单调递增;(2)证明和之间存在“隔离直线”,且b的最小值为-4.21.(12分)已知(1)求的最小正周期及单调递增区间;(2)已知钝角内角A,B,C的对边长分别a,b,c,若,,.求a的值22.(10分)2021年7月29日,中国游泳队获得了女子米自由泳接力决赛冠军并打破世界纪录.受奥运精神的鼓舞,某游泳俱乐部组织100名游泳爱好者进行自由泳1500米测试,并记录他们的时间(单位:分钟),将所得数据分成5组:,,,,,整理得到如图所示的频率分布直方图.(1)求出直方图中m的值;(2)利用样本估计总体的思想,估计这100位游泳爱好者1500米自由泳测试时间的平均数和中位数(同一组中的数据用该组区间中点值作代表).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用导数的几何意义即可求切线方程﹒【详解】,,,,在处的切线为:,即﹒故选:C﹒2、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D3、C【解析】先由cosA的值求出,进而求出,用正弦定理求出b的值.【详解】因为cosA=,所以,所以由正弦定理:,得:.故选:C4、B【解析】由题意知直线的斜率为,设其倾斜角为,将直线绕着原点逆时针旋转,得到新直线的斜率为,化简求值即可得到答案.【详解】由知斜率为,设其倾斜角为,则,将直线绕着原点逆时针旋转,则故新直线的斜率是.故选:B.5、B【解析】由导数求得的最小值,由最小值非负可得的范围【详解】定义域是,,若,则在上恒成立,单调递增,,不合题意;若,则时,,递减,时,,递增,所以时,取得极小值也是最小值,由题意,解得故选:B6、D【解析】根据给定条件求出数列的通项公式,再利用裂项相消法即可计算作答.【详解】因,则,所以,所以.故选:D7、D【解析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D8、A【解析】由正弦定理求解即可.【详解】因为,所以故选:A9、B【解析】过分别作垂直于准线,垂足为,则由抛物线的定义可得,再过MN的中点作垂直于准线,垂足为,然后利用梯形的中位线定理可求得结果【详解】抛物线=的焦点,准线方程为直线如图,过分别作垂直于准线,垂足为,过MN的中点作垂直于准线,垂足为,则由抛物线的定义可得,因为,所以,因为是梯形的中位线,所以,所以线段MN的中点到y轴的距离为4,故选:B10、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B11、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C12、A【解析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件故选A考点:必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【点睛】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.14、【解析】根据分层抽样的方法,即可求解.【详解】由题意,甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件,用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取个数为件.故答案为:.15、36【解析】根据等比数列下标和性质得到,再根据等差数列前项和公式计算可得;【详解】解:因,所以,所以;故答案为:16、12【解析】根据题意,先通过原始数据的平均数、方差及新数据的平均数求出k,进而求出新数据的方差.【详解】由题意,原式数据的平均数和方程分别为:,则新数据的平均数,于是新数据的方差.故答案为:12.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)+1;(2)单调增区间,单调减区间是和,极大值为,极小值为【解析】(1)根据导数的几何意义可求出切线斜率,求出后利用点斜式即可得解;(2)求出函数导数后,解一元二次不等式分别求出、时的取值范围即可得解.【详解】(1)因为,所以,∴切线方程为,即+1;(2),所以当或时,,当时,,所以函数单调增区间是,单调减区间是和,极大值为,极小值为18、(1),;(2).【解析】(1)极值点处导数值为零,据此即可求出a和b;(2)利用导数求出f(x)在时的最大值即可.【小问1详解】由题设,,又,,解得,.【小问2详解】由(1)得,即,当时,,随的变化情况如下表:1+0-0+递增极大值递减极小值递增∴在上单调递增,在上单调递减,在上单调递增,∴当时,为极大值,又,显然f(-)<f(2)所以为在上的最大值.要使对任意恒成立,则只需,解得或c>1.∴实数c的取值范围为.19、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.20、(1)见解析(2)见解析【解析】(1)由导数得出在上的单调性;(2)设和之间的隔离直线为y=kx+b,由题设条件得出对任意恒成立,再由二次函数的性质求解即可.【小问1详解】,当时,在上单调递增在内单调递增【小问2详解】设和之间的隔离直线为y=kx+b则对任意恒成立,即对任意恒成立由对任意恒成立,得当时,则有符合题意;当时,则有对任意恒成立的对称轴为又的对称轴为即故和之间存在“隔离直线”,且b的最小值为-4.【点睛】关键点睛:在解决问题一时,求了一阶导得不了函数的单调性,再次求导得,进而得出在恒成立,得在上的单调性.21、(1),;(2)2.【解析】(1)利用三角恒等变换公式化简函数,再利用三角函数性质计算作答.(2)由(1)的结论及已知求出角C,再利用余弦定理计算判断作答.【小问1详解】依题意,,则的最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论