2026届江西省重点中学数学高二第一学期期末学业质量监测试题含解析_第1页
2026届江西省重点中学数学高二第一学期期末学业质量监测试题含解析_第2页
2026届江西省重点中学数学高二第一学期期末学业质量监测试题含解析_第3页
2026届江西省重点中学数学高二第一学期期末学业质量监测试题含解析_第4页
2026届江西省重点中学数学高二第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江西省重点中学数学高二第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数极小值为()A. B.C. D.2.已知直线和互相垂直,则实数的值为()A. B.C.或 D.3.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.4.直线的倾斜角为()A.30° B.60°C.90° D.120°5.已知圆,直线,则直线l被圆C所截得的弦长的最小值为()A.2 B.3C.4 D.56.某救援队有5名队员,其中有1名队长,1名副队长,在一次救援中需随机分成两个行动小组,其中一组2名队员,另一组3名队员,则正、副队长不在同一组的概率为()A. B.C. D.7.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.8.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.609.命题“对任意,都有”的否定是()A.对任意,都有 B.存在,使得C.对任意,都有 D.存在,使得10.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是1511.如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则()AB.C.D.12.已知数列为递增等比数列,,则数列的前2019项和()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设公差的等差数列的前项和为,已知,且,,成等比数列,则的最小值为______14.若双曲线的离心率为2,则此双曲线的渐近线方程___________.15.若满足约束条件,则的最大值为_________.16.已知为椭圆上的一点,,分别为圆和圆上的点,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.18.(12分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.19.(12分)已知动圆过点,且与直线:相切(1)求动圆圆心的轨迹方程;(2)若过点且斜率的直线与圆心的轨迹交于两点,求线段的长度20.(12分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围21.(12分)已知椭圆的左、右焦点分别为、,离心率,且过点(1)求椭圆C的方程;(2)已知过的直线l交椭圆C于A、B两点,试探究在平面内是否存在定点Q,使得是一个确定的常数?若存在,求出点Q的坐标;若不存在,说明理由22.(10分)已知圆C:x2+y2+2ax﹣3=0,且圆C上存在两点关于直线3x﹣2y﹣3=0对称.(1)求圆C的半径r;(2)若直线l过点A(2,),且与圆C交于MN,两点,|MN|=2,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.2、B【解析】由两直线垂直可得出关于实数的等式,求解即可.【详解】由已知可得,解得.故选:B.3、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.4、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B5、C【解析】直线l过定点D(1,1),当时,弦长最短.【详解】由,圆心,半径,,由,故直线l过定点,∵,故D在圆C内部,直线l始终与圆相交,当时,直线l被圆截得的弦长最短,,弦长=.故选:C.6、C【解析】求出基本事件总数与正、副队长不在同一组的基本事件个数,即可求出答案.【详解】基本事件总数为正、副队长不在同一组的基本事件个数为故正、副队长不在同一组的概率为.故选:C.7、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A8、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.9、B【解析】根据全称命题的否定是特称命题形式,可判断正确答案.【详解】因为全称命题的否定是特称命题,所以命题“对任意,都有”的否定是“存在,使得”故选:B.10、D【解析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D11、B【解析】直接根据图表得到答案.【详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.12、C【解析】根据数列为递增的等比数列,,利用“”法求得,再代入等比数列的前n项和公式求解.【详解】因为数列为递增等比数列,所以,解得:,所以.故选:C【点睛】本题主要考查等比数列的基本运算,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、##0.4【解析】应用等比中项的性质及等差数列通项公式求公差d,进而写出等差数列的通项公式、前n项和公式,再求目标式的最小值.【详解】由题设,,则,整理得,又,解得,故,,所以,故当时目标式有最小值为.故答案为:14、【解析】根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.【详解】解:由题可知,离心率,即,又,即,则,故此双曲线的渐近线方程为.故答案为:.15、7【解析】画出约束条件所表示的平面区域,结合图象和直线在轴上的截距,确定目标函数的最优解,代入即可求解.【详解】画出不等式组所表示的平面区域,如图所示,目标函数可化为,当直线过点点时,此时直线在轴上的截距最大,此时目标函数取得最大值,又由,解得,即,所以目标函数的最大值为.故答案为:.16、8【解析】根据椭圆的定义、点到圆上距离的最小值,即可得到答案;【详解】设为椭圆的左右焦点,则,等号成立,当共线,共线,的最小值为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设公比为,则由已知可得,求出公比,再求出首项,从而可求出数列的通项公式;(2)由已知可得,而,所以,然后利用错位相减法可求得结果【小问1详解】设各项为正的等比数列的公比为,,,则,,,即,解得或(舍去),所以,所以数列的通项公式为.【小问2详解】因为是以1为首项,1为公差的等差数列,所以.由(1)知,所以.所以①在①的等式两边同乘以,得②由①②等式两边相减,得,所以数列的前项和.18、(1)(2)【解析】(1)根据等差数列的通项公式和等比中项,可得,再根据等差数列的前项和公式,即可求出,,进而求出结果;(2)由(1)得,结合等比数列前项和公式和对数运算性质,利用分组求和,即可求出结果.【小问1详解】解:设的公差为,由,,成等比数列可知,即,化简得.由可得,所以.将代入,得,,所以.小问2详解】解:由(1)得,所以.19、(1);(2).【解析】(1)由题意分析圆心符合抛物线定义,然后求轨迹方程;(2)直接联立方程组,求出弦长.【详解】解:(1)圆过点,且与直线相切点到直线的距离等于由抛物线定义可知点的轨迹是以为焦点、以为准线的抛物线,依题意,设点的轨迹方程为,则,解得,所以,动圆圆心的轨迹方程是(2)依题意可知直线,设联立,得,则,所以,线段的长度为【点睛】(1)待定系数法、代入法可以求二次曲线的标准方程;(2)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.20、(1)(2)【解析】(1)根据题意列不等式组求解(2)判断的真假性后分别求解【小问1详解】由题意得,解得且故m的取值范围是【小问2详解】∵为假命题,∴p和q都是真命题,对于命题q,由题意得:恒成立,∴,∴,∴,解得故m的取值范围是21、(1)(2)存在,定点【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)对直线的斜率是否存在进行分类讨论,设出直线的方程并与椭圆方程联立,结合是常数列方程,从而求得定点的坐标.小问1详解】,,由题可得:.【小问2详解】当直线AB的斜率存在时,设直线AB的方程为,设,,联立方程组,整理得,可得,所以则恒成立,则,解得,,,此时,即存在定点满足条件当直线AB的斜率不存在时,直线AB的方程为x=-2,可得,,设要使得是一个常数,即,显然,也使得成立;综上所述:存在定点满足条件.22、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根据对称性可知直线m过圆心C.代入后可求a,进而可求半径;(2)先求出圆心到直线l的距离,然后结合直线与圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论