版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年辽宁大连市普兰店区数学高二第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在棱长均为1的平行六面体中,,则()A. B.3C. D.62.已知点,动点P满足,则点P的轨迹为()A椭圆 B.双曲线C.抛物线 D.圆3.已知椭圆的一个焦点坐标为,则的值为()A. B.C. D.4.已知数列通项公式,则()A.6 B.13C.21 D.315.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆6.从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A. B.C. D.7.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.68.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.39.在中,若,则()A.150° B.120°C.60° D.30°10.椭圆的一个焦点坐标为,则()A.2 B.3C.4 D.811.已知正四面体的底面的中心为为的中点,则直线与所成角的余弦值为()A. B.C. D.12.若函数恰好有个不同的零点,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,甲站在水库底面上的点处,乙站在水坝斜面上的点处,已知库底与水坝斜面所成的二面角为,测得从,到库底与水坝斜面的交线的距离分别为,,若,则甲,乙两人相距________________14.若函数在处取得极小值,则a=__________15.过点与直线平行的直线的方程是________.16.机动车驾驶考试是为了获得机动车驾驶证的考试,采用全国统一的考试科目内容及合格标准,包括科目一理论考试、科目二场地驾驶技能考试、科目三道路驾驶技能考试和科目四安全文明常识考试共四项考试,考生应依次参加四项考试,前一项考试合格后才能报名参加后一项考试,考试不合格则需另行交费预约再次补考.据公安部门通报,佛山市四项考试的合格率依次为,,,,且各项考试是否通过互不影响,则一位佛山公民通过驾考四项考试至多需要补考一次的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上一点到焦点的距离与到轴的距离相等.(1)求抛物线的方程;(2)若直线与抛物线交于A,两点,且满足(为坐标原点),证明:直线与轴的交点为定点.18.(12分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?19.(12分)已知双曲线C的方程为(),离心率为.(1)求双曲线的标准方程;(2)过的直线交曲线于两点,求的取值范围.20.(12分)某校为了了解在校学生的支出情况,组织学生调查了该校2014年至2020年学生的人均月支出y(单位:百元)的数据如下表:年份2014201520162017201820192020年份代号t1234567人均月支出y3.94.34.65.45.86.26.9(1)求2014年至2020年中连续的两年里,两年人均月支出都超过4百元的概率;(2)求y关于t的线性回归方程;(3)利用(2)中的回归方程,预测该校2022年的人均月支出.附:最小二乘估计公式:,21.(12分)如图,三棱锥中,,,,,,点是PA的中点,点D是AC的中点,点N在PB上,且.(1)证明:平面CMN;(2)求平面MNC与平面ABC所成角的余弦值.22.(10分)已知数列通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设,,,利用结合数量积的运算即可得到答案.【详解】设,,,由已知,得,,,,所以,所以.故选:C2、A【解析】根据椭圆的定义即可求解.【详解】解:,故,又,根据椭圆的定义可知:P的轨迹为椭圆.故选:A.3、B【解析】根据题意得到得到答案.【详解】椭圆焦点在轴上,且,故.故选:B.4、C【解析】令即得解.【详解】解:令得.故选:C5、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.6、C【解析】列举出所有情况,然后根据两边之和大于第三边数出能构成三角形的情况,进而得到答案.【详解】5个数取3个数的所有情况如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10种情况,而能构成三角形的情况有{2,3,4;2,4,5;3,4,5}共3种情况,故所求概率.故选:C.7、D【解析】利用正态分布的计算公式:,【详解】且又故选:D8、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D9、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.10、D【解析】由条件可得,,,,由关系可求值.【详解】∵椭圆方程为:,∴,∴,,∵椭圆的一个焦点坐标为,∴,又,∴,∴,故选:D.11、B【解析】连接,再取中点,连接,得到为直线与所成角,再解三角形即可.【详解】连接,再取中点,连接,因为分别为VC,中点,则,且底面,所以为直线与所成角,令正四面体边长为1,则,,,所以,故选:.12、D【解析】分析可知,直线与函数的图象有个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围.【详解】令,可得,构造函数,其中,由题意可知,直线与函数的图象有个交点,,由,可得或,列表如下:增极大值减极小值增所以,,,作出直线与函数的图象如下图所示:由图可知,当时,即当时,直线与函数的图象有个交点,即函数有个零点.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先构造二面角的平面角,如图,再分别在和中求解.【详解】作,且,连结,,,,平面且,四边形时平行四边形,,平面,平面,中,,中,.故答案为:14、2【解析】对函数求导,根据极值点得到或,讨论的不同取值,利用导数的方法判定函数单调性,验证极值点,即可得解.【详解】由可得,因为函数在处取得极小值,所以,解得或,若,则,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极小值,符合题意;当时,,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极大值,不符合题意;综上:.故答案为:2.【点睛】思路点睛:已知函数极值点求参数时,一般需要先对函数求导,根据极值点求出参数,再验证所求参数是否符合题意即可.15、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:16、【解析】至多需要补考一次,分5种情况分别计算后再求和即可.【详解】不需要补考就通过的概率为;仅补考科目一就通过的概率为;仅补考科目二就通过的概率为;仅补考科目三就通过的概率为;仅补考科目三就通过的概率为,一位佛山公民通过驾考四项考试至多需要补考一次的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)利用抛物线点,n)到焦点的距离等于到x轴的距离求出,从而得到抛物线的标准方程(2)联立直线与抛物线方程,通过韦达定理求出直线方程,然后由,即可求解【小问1详解】由题意可得,故抛物线方程为;【小问2详解】设,,,,直线的方程为,联立方程中,消去得,,则,又,解得或(舍去),直线方程为,直线过定点18、(1),;(2)时,最大值为m3.【解析】(1)连接,在中,由,利用勾股定理可得,设圆柱底面半径为,求出.利用(其中即可得出;(2)利用导数,求出V的单调性,即可得出结论【小问1详解】连接,在中,,,设圆柱底面半径为,则,即,,其中【小问2详解】由及,得,列表如下:,0↗极大值↘∴当时,有极大值,也是最大值为m319、(1);(2).【解析】(1)根据题意,结合离心率易,知双曲线为等轴双曲线,进而可求解;(2)根据题意,分直线斜率否存在两种情形讨论,结合设而不求法以及向量数量积的坐标公式,即可求解.【小问1详解】根据题意,由离心率为,知双曲线是等轴双曲线,所以,故双曲线的标准方程为.【小问2详解】当直线斜率存在时,设直线的方程为,则由消去,得到,∵直线与双曲线交于M、N两点,,解得.设,则有,,因此,∵,∴且,故或,故;②当直线的斜率不存在时,此时,易知,,故.综上所述,所求的取值范围是.20、(1);(2);(3)7.8百元.【解析】(1)应用列举法,结合古典概型计算公式进行进行求解即可;(2)根据题中所给的公式进行计算求解即可;(3)根据(2)的结论,利用代入法进行求解即可.【小问1详解】2014年至2020年中连续的两年有、、、、、共6种组合,其中只有不满足连续两年人均月支出都超过4百元,所以连续两年人均月支出都超过4百元的概率为;【小问2详解】由已知数据分别求出公式中的量.,,,,所求回归方程为;小问3详解】由(2)知,,将2022年的年份代号代入(2)中的回归方程,得,故预测该校2022年人均月支出为7.8百元.21、(1)证明见解析(2)【解析】建立如图所示空间直角坐标系,得到相关点和相关向量的坐标,(1)求出平面的法向量,利用证明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夹角公式即可求解.【小问1详解】证明:三棱锥中,,,∴分别以,,,,轴建立如图所示空间直角坐标系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医疗器械检验与维护规范指南
- 诉讼保全申请书
- 聊城疫情义工申请书
- 2025年企业质量管理与ISO体系实施手册
- 民事审判申请书
- 舞蹈辞职报告申请书
- 民航集团面试题目及答案
- 四方测评申请书
- 技校入部申请书1000
- 农民工子女捐款申请书
- 江苏省南京市2025-2026学年八年级上学期期末数学模拟试卷(苏科版)(解析版)
- 箱式变电站安装施工工艺
- 2025年安徽省普通高中学业水平合格性考试数学试卷(含答案)
- 油罐围栏施工方案(3篇)
- 国家开放大学2025年(2025年秋)期末考试真题及答案
- 盘箱柜施工方案
- (2025年)司法考试法理学历年真题及答案
- 2025年中小学教师正高级职称评聘答辩试题(附答案)
- 非道路授权签字人考试题及答案
- 2025年林教头风雪山神庙检测试题(含答案)
- 体检中心外科检查
评论
0/150
提交评论