2026届云南省昆明市五华区数学高二第一学期期末考试试题含解析_第1页
2026届云南省昆明市五华区数学高二第一学期期末考试试题含解析_第2页
2026届云南省昆明市五华区数学高二第一学期期末考试试题含解析_第3页
2026届云南省昆明市五华区数学高二第一学期期末考试试题含解析_第4页
2026届云南省昆明市五华区数学高二第一学期期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省昆明市五华区数学高二第一学期期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方体中,()A. B.C. D.2.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率(每分钟鸣叫的次数)与气温(单位:℃)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了关于的线性回归方程,则下列说法不正确的是()(次数/分钟)2030405060(℃)2527.52932.536A.的值是20B.变量,呈正相关关系C.若的值增加1,则的值约增加0.25D.当蟋蟀52次/分鸣叫时,该地当时的气温预报值为33.5℃3.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=14.若向量,,则()A. B.C. D.5.已知数列的通项公式为.若数列的前n项和为,则取得最大值时n的值为()A.2 B.3C.4 D.56.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.7.已知等差数列的前项和为,,,则()A. B.C. D.8.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.9.已知定义在上的函数满足下列三个条件:①当时,;②的图象关于轴对称;③,都有.则、、的大小关系是()A. B.C. D.10.已知点,在双曲线上,线段的中点,则()A. B.C. D.11.中国农历的二十四节气是中华民族的智慧与传统文化的结晶,二十四节气歌是以春、夏、秋、冬开始的四句诗.在国际气象界,二十四节气被誉为“中国的第五大发明”.2016年11月30日,二十四节气被正式列入联合国教科文组织人类非物质文化遗产代表作名录.某小学三年级共有学生600名,随机抽查100名学生并提问二十四节气歌,只能说出一句的有45人,能说出两句及以上的有38人,据此估计该校三年级的600名学生中,对二十四节气歌一句也说不出的有()A.17人 B.83人C.102人 D.115人12.下列命题错误的是()A,B.命题“”的否定是“”C.设,则“且”是“”的必要不充分条件D.设,则“”是“”的必要不充分条件二、填空题:本题共4小题,每小题5分,共20分。13.已知点,点是直线上的动点,则的最小值是_____________14.从10名大学毕业生中选3个人担任村主任助理,则甲、乙至少有1人入选,而丙没有入选不同选法的种数为___________.15.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.16.已知点P是椭圆上的一点,点,则的最小值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与抛物线交于两点(1)若,直线过抛物线的焦点,线段中点的纵坐标为2,求的长;(2)若交于,求的值18.(12分)书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解当地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求的值;(2)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于,和的年轻人中抽取5人,再从中任选2人进行调查,求其中至少有1人每天阅读时间位于的概率.19.(12分)已知命题:方程有实数解,命题:,.(1)若是真命题,求实数的取值范围;(2)若为假命题,且为真命题,求实数的取值范围.20.(12分)已知椭圆的左、右焦点分别为,过右焦点作直线交于,其中的周长为的离心率为.(1)求的方程;(2)已知的重心为,设和的面积比为,求实数的取值范围.21.(12分)如图,在四棱锥P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M、N、Q分别为AD、PD、BC的中点(1)证明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值22.(10分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据正方体的性质,结合向量加减法的几何意义有,即可知所表示的向量.【详解】∵,而,∴,故选:B2、D【解析】根据样本中心过经过线性回归方程、正相关的性质和线性回归方程的意义进行判断即可.【详解】由题意,得,,则,故A正确;由线性回归方程可知,,变量,呈正相关关系,故B正确;若的值增加1,则的值约增加0.25,故C正确;当时,,故D错误.故选:D.3、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C4、D【解析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【详解】由已知,,,与不垂直,若,则,,但是,,因此与不共线故选:D5、C【解析】根据单调性分析出数列的正数项有哪些即可求解.【详解】由条件有,当时,,即;当时,,即.即,所以取得最大值时n的值为.故选:C6、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B7、C【解析】利用已知条件求得,由此求得.【详解】依题意,解得,所以.故选:C【点睛】本小题主要考查等差数列的通项公式和前项和公式,属于基础题.8、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.9、A【解析】推导出函数为偶函数,结合已知条件可得出,,,利用导数可知函数在上为减函数,由此可得出、、的大小关系.【详解】因为函数的图象关于轴对称,则,故,,又因为,都有,所以,,所以,,,,因为当时,,,当且仅当时,等号成立,且不恒为零,故函数在上为减函数,因为,则,故.故选:A.10、D【解析】先根据中点弦定理求出直线的斜率,然后求出直线的方程,联立后利用弦长公式求解的长.【详解】设,,则可得方程组:,两式相减得:,即,其中因为的中点为,故,故,即直线的斜率为,故直线的方程为:,联立,解得:,由韦达定理得:,,则故选:D11、C【解析】根据频率计算出正确答案.【详解】一句也说不出的学生频率为,所以估计名学生中,一句也说不出的有人.故选:C12、C【解析】根据题意,对四个选项一一进行分析,举出例子当时,,即可判断A选项;根据特称命题的否定为全称命题,可判断B选项;根据充分条件和必要条件的定义,即可判断CD选项.【详解】解:对于A,当时,,,故A正确;对于B,根据特称命题的否定为全称命题,得“”的否定是“”,故B正确;对于C,当且时,成立;当时,却不一定有且,如,因此“且”是“”的充分不必要条件,故C错误;对于D,因为当时,有可能等于0,当时,必有,所以“”是“”的必要不充分条件,故D正确.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接根据点到直线的距离公式即可求出【详解】线段最短时,与直线垂直,所以,的最小值即为点到直线的距离,则.故答案为:.14、49【解析】丙没有入选,相当于从9个人中选3人,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选,分别求出每种情况的选法数,再利用分类加法计数原理即可得解.【详解】丙没有入选,把丙去掉,相当于从9个人中选3人,甲、乙至少有1人入选,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选.甲乙两人只有一人入选,选法有种;甲乙两人都入选,选法有种.所以,满足题意的选法共有种.故答案为:49.【点睛】本题考查组合的应用,其中涉及到分类加法计数原理,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.15、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.16、【解析】设,表示出,消去y,利用二次函数求最值即可.【详解】设,则.所以当x=1时,最小.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)6(2)2【解析】(1)通过作辅助线,利用抛物线定义,结合梯形的中位线定理,可求得答案;(2)根据题意可求得直线AB的方程为y=x+4,联立抛物线方程,得到根与系数的关系,由OA⊥OB,得,根据数量积的计算即可得答案.【小问1详解】取AB的中点为E,当p=2时,抛物线为C:x2=4y,焦点F坐标为F(0,1),过A,E,B分别作准线y=-1的垂线,重足分别为I,H,G,在梯形ABGI中(图1),E是AB中点,则2EH=AI+BG,EH=2-(-1)=3,因为AB=AF+BF=AI+BG,所以AB=2EH=6.【小问2详解】设,由OD⊥AB交AB于D(-2,2),(图2),得kOD=-1,kAB=1,则直线AB的方程为y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.18、(1)(2)【解析】(1)由频率之和为1求参数.(2)由分层抽样的比例可得抽取的5人中,和分别为:1人,2人,2人,再应用列举法写出所有基本事件,根据古典概型的概率计算即可.小问1详解】根据频率分布直方图得:,解得;【小问2详解】由于,和的频率之比为:,故抽取的5人中,,和别为:1人,2人,2人,记的1人为,的2人为,,的2人为,,故随机抽取2人共有,,,,,,,,,10种,其中至少有1人每天阅读时间位于的包含,,,,,,共7种,故概率.19、(1)或;(2)【解析】(1)由方程有实数根则,可求出实数的取值范围.(2)为真命题,即从而得出的取值范围,由(1)可得出为假命题时实数的取值范围.即可得出答案.【详解】解:(1)方程有实数解得,,解之得或;(2)为假命题,则,为真命题时,,,则故.故为假命题且为真命题时,.【点睛】本题考查命题为真时求参数的范围和两个命题同时满足条件时,求参数的范围,属于基础题.20、(1)(2)【解析】(1)已知焦点弦三角形的周长,以及离心率求椭圆方程,待定系数直接求解即可.(2)第一步设点设直线,第二步联立方程韦达定理,第三步条件转化,利用三角形等面积法,列方程,第四步利用韦达定理进行转化,计算即可.【小问1详解】因为的周长为,的离心率为,所以,,所以,,又,所以椭圆的方程为.【小问2详解】方法一:,,的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.令,②则,可得当时,当时,所以,又解得③由①②③得,解得.所以实数的取值范围是.方法二:同方法一可得的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.所以因为,所以解得②由①②解得.所以实数的取值范围是.21、(1)证明过程见解析(2)【解析】(1)由线线平行证明线面平行;(2)建立空间直角坐标系,利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论