版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教七年级下册期末复习数学必考知识点真题解析一、选择题1.下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6 D.a6÷a3=a22.如图,∠B的同位角是()A.∠1 B.∠2 C.∠3 D.∠43.方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为,那么这个方程可以是()A.3x﹣4y=16 B.2(x+y)=6x C.x+y=0 D.﹣y=04.若,则下列判断中错误的是()A. B. C. D.5.已知关于x的不等式组,有以下说法:①如果它的解集是1<x≤4,那么a=4;②当a=1时,它无解;③如果它的整数解只有2,3,4,那么4≤a<5;④如果它有解,那么a≥2.其中说法正确的个数为()A.1个 B.2个 C.3个 D.4个6.下列命题中,正确的是()A.任何有理数的偶数次方都是正数B.任何一个整数都有倒数C.若b=a,则|b|=|a|D.一个正数与一个负数互为相反数7.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A. B.C. D.8.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=,则∠C的度数为()A.40° B.41° C.42° D.43°二、填空题9.计算:2a(-3b)=_____________.10.命题:“64的平方根为8”是_____________命题(填“真”或“假”).11.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.12.已知,则______.13.关于x、y的方程组的解x与y满足条件x+y≤5,则3m﹣4的最大值是_____.14.如图,在一块长为40m,宽为30m的长方形地面上,有一条弯曲的小路,小路的左边线向右平移1m就是它的右边线则这条小路的面积是______。15.已知三角形三边长分别为2,x,9,若x为奇数,则此三角形的周长为________.16.如图,直尺经过一块三角板的直角顶点B,若将边绕点B顺时针旋转,,则度数为_______.17.计算(1)(2)18.因式分解:(1)(2)19.解方程组:(1)(2)20.解不等式组,并在数轴上表示它们的解集.三、解答题21.如图,AC平分∠MAE,交DB于点F.(1)若AB∥CE,∠BAE=50°,求∠ACE的度数;(2)若∠AFB=∠CAM,说明∠ACE=∠BDE的理由.22.甲、乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过元后,超出元的部分按收费;在乙商场累计购物超过元后,超出元的部分按收费,如果顾客累计购物超过元.(1)写出该顾客到甲、乙两商场购物的实际费用;(2)到哪家商场购物花费少?请你用方程和不等式的知识说明理由.23.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_米(直接写出答案).24.已知,,点为射线上一点.(1)如图1,写出、、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,,,求的度数.25.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO的度数是______;②当∠BAD=∠ABD时,x=______;当∠BAD=∠BDA时,x=______;(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ABD中有两个相等的角?若存在,求出x的值;若不存在,请说明理由.【参考答案】一、选择题1.C解析:C【分析】根据同类项定义与合并同类项法则可判断A,利用幂指数运算法则分别计算出各项的结果,可判断B、C、D即可.【详解】解:A.a3与a2不是同类项不能合并,a3+a2a5,故选项A错误;B.a3•a2=a5,故选项B错误;C.(a2)3=a6,故选项C正确;D.a6÷a3=a3,故选项D错误.故选:C.【点睛】本题主要考查了幂指数的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.2.C解析:C【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:∠B与∠3是DE、BC被AB所截而成的同位角,故选:C.【点睛】本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.3.B解析:B【分析】把已知方程与各项方程联立组成方程组,使其解为x=2,y=4即可.【详解】解:A、联立得:,解得:,不合题意;B、联立得:,解得:,符合题意;C、联立得:,解得:,不合题意;D、联立得:,不合题意;故选:B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.D解析:D【分析】根据不等式的基本性质进行判断【详解】,故A正确;故B正确;故C正确;故D错误;所以答案选D【点睛】本题主要考查了不等式的基本性质5.C解析:C【分析】分别求出每个不等式的解集,再根据各结论中a的取值情况逐一判断即可.【详解】解:由x﹣1>0得x>1,由x﹣a≤0得x≤a,①如果它的解集是1<x≤4,那么a=4,此结论正确;②当a=1时,它无解,此结论正确;③如果它的整数解只有2,3,4,那么4≤a<5,此结论正确;④如果它有解,那么a>1,此结论错误;故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.C解析:C【解析】【分析】利用举反例的方法判断即可.【详解】解:0的偶数次方不是正数,A错误;0没有倒数,B错误;b=a,则|b|=|a|,C正确;1和﹣2不是互为相反数,D错误;故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.C解析:C【分析】根据给定的部分“三角形数”和“正方形数”找出“三角形数”可看成从1开始几个连续自然数的和以及“正方形数”可看成某个自然数的平方,依此规律逐一分析四个选项中的三个数是否符合该规律,由此即可得出结论.【详解】解:A、13不是正方形数,不合题意;B、9和16不是三角形数,不合题意;C、36=62=(5+1)2,n=5;两个三角形的数分别是:1+2+3+4+5=15;1+2+3+4+5+6=21;故C符合题意;D、18和31不是三角形数,不合题意;故选:C.【点睛】本题考查了规律型中数字的变化类,根据给定的部分“三角形数”和“正方形数”找出“三角形数”和“正方形数”的特点是解题的关键.8.B解析:B【详解】解:如图,连接AO、BO.由折叠的性质可得EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,又∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,所以∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,由三角形的内角和定理可得∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选B.点睛:本题以三角形为载体,以翻折变换为方法,以考查三角形的内角和定理,借助翻折变换的性质,灵活运用三角形的内角和定理来解题是关键.二、填空题9.-6ab【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式计算可得.【详解】解:2a•(-3b)=-6ab,故答案为:-6ab.【点睛】本题主要考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.10.假【分析】根据平方根的定义直接判断即可.【详解】解:∵64的平方根为±8,∴“64的平方根为8”是假命题,故答案为:假.【点睛】本题考查了真假命题的判断和平方根,解题关键是熟练运用平方根的定义求一个数的平方根.11.十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.12.1【分析】将所求式子利用完全平方公式分解,将x,y值代入计算.【详解】解:∵,∴,故答案为:1.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是将所求式子合理变形.13.-.【分析】由x+y≤5得出关于m的不等式,解之可得m的取值,得出m的最大值,即可求得结论.【详解】解:解方程组,①+②得,2x+2y=2+10m,∵x+y≤5,∴1+5m≤5,解得:m≤,∴3m﹣4的最大值为3×﹣4=﹣,故答案为﹣.【点睛】本题主要考查解二元一次方程组和一元一次不等式的能力,熟练掌握加减消元法是解题的关键.14.30m2【解析】【分析】根据小路的左边线向右平移1m就是它的右边线,可得路的宽度是1米,根据平移,可把路移到左边,再根据面积公式计算即可.【详解】解:∵小路的左边线向右平移1m就是它的右边线,∴路的宽度是1米,∴这条小路的面积是1×30=30m2,故答案为:30m2.【点睛】本题考查了生活中的平移现象,根据平移的性质将不规则图形的面积转化为易求的图形面积是解题关键,属于常考题型.15.20【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出x的取值范围,然后确定出x的值,再根据周长公式求解即可.【详解】∵9-2=7,9+2=11,∴7<x<11,∵x为奇解析:20【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出x的取值范围,然后确定出x的值,再根据周长公式求解即可.【详解】∵9-2=7,9+2=11,∴7<x<11,∵x为奇数,∴x的值为9,∴此三角形的周长是:2+9+9=20.故答案为:20.【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之差小于第三边,两边之和大于第三边.16.50°【分析】利用三角形的外角的性质求出∠DAB,再利用平行线的性质解决问题即可.【详解】解:∵∠DAB=∠C+∠ABC,∠C=30°,∠ABC=20°,∴∠DAB=20°+30°=50°解析:50°【分析】利用三角形的外角的性质求出∠DAB,再利用平行线的性质解决问题即可.【详解】解:∵∠DAB=∠C+∠ABC,∠C=30°,∠ABC=20°,∴∠DAB=20°+30°=50°,∵EF∥AB,∴∠DEF=∠DAB=50°,故答案为:50°.【点睛】本题考查旋转的性质,平行线的性质等知识.17.(1);(2)2【分析】(1)先分别计算积的乘方,幂的乘方,单项式乘以单项式,再合并同类项即可;(2)根据有理数的乘方,负整数指数幂的运算,零指数幂的运算,分别计算即可.【详解】(1)解:解析:(1);(2)2【分析】(1)先分别计算积的乘方,幂的乘方,单项式乘以单项式,再合并同类项即可;(2)根据有理数的乘方,负整数指数幂的运算,零指数幂的运算,分别计算即可.【详解】(1)解:原式,(2)解:原式.【点睛】本题考查整式的乘法和实数的混合运算,以及零指数幂和负整数指数幂的计算,熟练掌握运算法则是解题关键.18.(1);(2)【分析】(1)原式提取公因式,然后利用平方差公式分解即可;(2)原式利用完全平方公式和单项式乘以多项式的计算法则展开合并,然后再运用完全平方公式分解即可.【详解】(1)解:解析:(1);(2)【分析】(1)原式提取公因式,然后利用平方差公式分解即可;(2)原式利用完全平方公式和单项式乘以多项式的计算法则展开合并,然后再运用完全平方公式分解即可.【详解】(1)解:原式(2)解:原式.【点睛】本题主要考查了因式分解,整式的混合运算,解题的关键在于能够熟练掌握相关知识进行求解.19.(1);(2).【分析】(1)利用加减消元法,②-①即可求解;(2)利用加减消元法,由①×3-②求解即可.【详解】解:(1),②-①得:,把代入①得:,方程缉的解为(2),①×3解析:(1);(2).【分析】(1)利用加减消元法,②-①即可求解;(2)利用加减消元法,由①×3-②求解即可.【详解】解:(1),②-①得:,把代入①得:,方程缉的解为(2),①×3-②得:,即,将,①得:,方程组的解为.【点睛】本题考查了解二元一次方程组,解二元一次方程组要利用消元的思想,消元的方法有:代入消元和加减消元.20.-4≤x<3,数轴见解析【分析】分别求出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【详解】解:由得:x<3,由得:x≥-4,不等式组的解集为:,解析:-4≤x<3,数轴见解析【分析】分别求出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【详解】解:由得:x<3,由得:x≥-4,不等式组的解集为:,在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.(1)∠ACE=65°;(2)理由见解析.【分析】(1)利用角平分线的定义求出∠MAC的度数,再根据平行线的性质求解即可;(2)先说明∠AFB=∠EAC,然后利用平行线的判定与性质求证即可.解析:(1)∠ACE=65°;(2)理由见解析.【分析】(1)利用角平分线的定义求出∠MAC的度数,再根据平行线的性质求解即可;(2)先说明∠AFB=∠EAC,然后利用平行线的判定与性质求证即可.【详解】解:(1)∵∠BAE=50°,∴∠MAE=130°.∵AC平分∠MAE,∴∠MAC=∠EAC=65°.∵AB∥CE,∴∠ACE=∠MAC=65°;(2)∵∠AFB=∠CAM,∠MAC=∠EAC,∴∠AFB=∠EAC,∴AC∥BD,∴∠ACE=∠BDE.【点睛】本题考查了平行线的性质与判定、角平分线的定义.题目难度不大,掌握平行线的性质与判定方法是解决本题的关键.22.(1)甲:;乙:;(2)当购物累计超过元时,到甲商场购物花费少;当购物累计超过元而不到元时,到甲商场购物花费少;当购物累计等于元时,到甲、乙两商场购物花费一样【分析】(1)设累计购物元.然后根据解析:(1)甲:;乙:;(2)当购物累计超过元时,到甲商场购物花费少;当购物累计超过元而不到元时,到甲商场购物花费少;当购物累计等于元时,到甲、乙两商场购物花费一样【分析】(1)设累计购物元.然后根据题意分别求出甲、乙的费用与x的关系式即可;(2)根据(1)列出的关系式,进行求解即可得到答案.【详解】解:设累计购物元.(1)甲:.乙:.(2)若到甲商场购物花费少,则解得.所以当购物累计超过元时,到甲商场购物花费少.若到乙商场购物花费少,则.解得.所以当购物累计超过元而不到元时,到甲商场购物花费少.若到甲、乙两商场花费一样,则.解得.所以当购物累计等于元时,到甲、乙两商场购物花费一样.【点睛】本题主要考查了一元一次不等式的实际应用,一元一次方程的实际应用,解题的关键在于能够准确根据题意列出关系式求解.23.(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,或1,.【分析】(1)设A款瓷砖单价x元,B款单价y元解析:(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,或1,.【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由是正整教分情况求出b的值.【详解】解:(1)设A款瓷砖单价x元,B款单价y元,则有,解得,答:A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:,解得a=1.由题可知,是正整教.设(k为正整数),变形得到,当k=1时,,故合去),当k=2时,,故舍去),当k=3时,,当k=4时,,答:B款瓷砖的长和宽分别为1,或1,.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.24.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 撤销夫妻离婚协议书
- 超龄用工劳务协议书
- 复古风格家纺系列复兴创新创业项目商业计划书
- 复古风格手工雕刻木门创新创业项目商业计划书
- 收割机智能化数据分析工具创新创业项目商业计划书
- 2025年互联网与信息技术职业技能竞赛区块链金融场景开发DeFi协议开发与流动性挖矿场景考核试卷
- 宜昌高新区跨境电商中心运营:对外开放新动能实践 -2026 届高三语文主题读写素材 11 月热点时事写作素材
- 2024年天津市应急管理事务中心招聘真题
- 2025年内科护理学高频考题题库及答案(共330题)
- 2025年那曲辅警协警招聘考试真题附答案详解(b卷)
- 2025贵州安顺市公安机关第二批招聘警务辅助人员116人笔试考试备考试题及答案解析
- 2025年短视频创意策划合同协议
- 老年人运动系统
- 施工安全文明施工奖惩制度汇编
- 空调包工安装合同范本
- 2025北京语言大学出版社有限公司招聘5人笔试历年典型考点题库附带答案详解3套试卷
- 2025文山市卫生健康系统选调工作人员(10人)考试笔试备考试题及答案解析
- 2025年生石灰行业分析报告及未来发展趋势预测
- 认知障碍科普
- 2025-2026学年上学期高一物理教科版期中必刷常考题之实验:用打点计时器测量小车的速度
- 2025年军队文职人员招聘考试试题及答案
评论
0/150
提交评论