备战2026年高考物理(新高考)易错点13 利用波的图像计算波速波长(4陷阱点5考点4题型)(解析版)_第1页
备战2026年高考物理(新高考)易错点13 利用波的图像计算波速波长(4陷阱点5考点4题型)(解析版)_第2页
备战2026年高考物理(新高考)易错点13 利用波的图像计算波速波长(4陷阱点5考点4题型)(解析版)_第3页
备战2026年高考物理(新高考)易错点13 利用波的图像计算波速波长(4陷阱点5考点4题型)(解析版)_第4页
备战2026年高考物理(新高考)易错点13 利用波的图像计算波速波长(4陷阱点5考点4题型)(解析版)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

易错点13不会利用波的图像计算波速波长

目录

01易错陷阱

易错点一:不够明确简谐运动的基本描述

易错点二:不够明确机械波的基本性质

易错点三:理解波的传播,图像问题时出现错误

易错点四:混淆波的稳定干涉条件

02易错知识点

知识点一、波动图像和振动图像的比较

知识点二、根据波的图像、波的传播方向判定质点的振动方向的方法

知识点三、求解波的图像与振动图像综合类问题

知识点四、波的多解问题

知识点五、波的干涉

03举一反三——易错题型

题型一:机械波的传播方向

题型二:机械波的图像分析

题型三:波的干涉问题

题型四:非常规波的传播与干涉问题

04易错题通关

易错点一:不够明确简谐运动的基本描述

1.简谐运动的回复力不可以是恒力.

2.简谐运动的平衡位置不一定是质点所受合力为零的位置,例如单摆的最低点合力不为零.

3,做简谐运动的质点先后通过同一点,回复力、加速度、位移都是相同的,速度大小相同,方向不

同。

4.做简谐运动的质点,速度增大时,其加速度一定减小.

5.简谐运动的图像描述的不是振动质点的轨迹.

6.简谐运动的振动图像一定是正弦曲线.

7.单摆在任何情况下的运动不一定都是简谐运动.

8.单摆的振动周期由摆球的质量和摆长和重力加速度共同决定.

9.当单摆的摆球运动到最低点时,回复力为零,所受合力不为零.

易错点二:不够明确机械波的基本性质

1.在机械波传播过程中,介质中的质点不沿着波的传播而移动.

2.机械波在一个周期内传播的距离不是振幅的4倍.

3.一切波都能发生衍射现象.

4.发生多普勒效应时,波源的真实频率没有发生变化.

易错点三:理解波的传播,图像问题时出现错误

1、波传到任意一点,该点的起振方向都和波源的起振方向相同。

2、介质中每个质点都做受迫振动,因此,任一质点的振动频率和周期都和波源的振动频率和周期相

同。

3、波从一种介质进入另一种介质,由于介质不同,波长和波速可以改变,但频率和周期都不会改变。

4、波源经过一个周期T完成一次全振动,波恰好向前传播一个波长的距离。

易错点四:混淆波的稳定干涉条件

波的干涉现象中振动加强点、减弱点的两种判断方法

1.公式法

某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr。

当两波源振动步调一致时

①若Δr=nλ(n=0,1,2,…),则振动加强;

λ

若Δr=(2n+1)(n=0,1,2,…),则振动减弱。

2

当两波源振动步调相反时

λ

若②Δr=(2n+1)(n=0,1,2,…),则振动加强;

2

若Δr=nλ(n=0,1,2,…),则振动减弱。

知识点一、波动图像和振动图像的比较

振动图像波的图像

研究

一振动质点沿波传播方向的所有质点

对象

研究某时刻介质中所有质点的空间分布规

一质点的位移随时间的变化规律

内容律

图像

物理表示同一质点在各时刻偏离平衡位置表示介质中的各个质点在某一时刻偏

意义的位移离平衡位置的位移

(1)波长、振幅

(1)质点振动周期

(2)任意一质点在该时刻偏离平衡位置

(2)质点振幅

的位移

图像(3)某一质点在各时刻偏离平衡位置的

(3)任意一质点在该时刻的加速度方向

信息位移

(4)已知波的传播方向,可判断介质中

(4)某一质点在各时刻速度、加速度的

各质点的振动方向;已知介质中某一质

方向

点的振动方向,可判断波的传播方向

图像随时间推移,图像延续,但已有形状不

随时间推移,波形沿传播方向平移

变化变

连续重复的最短

完整曲线占横坐表示一个周期表示一个波长

标的距离

知识点二、根据波的图像、波的传播方向判定质点的振动方向的

方法

内容图像

沿波的传播方向,“上坡”时质点向下振动,“下

“上下坡”法

坡”时质点向上振动

波形图上某点表示传播方向和振动方向的箭

“同侧”法

头在图线同侧

将波形沿传播方向进行微小的平移,再由对应

“微平移”法同一x坐标的两波形曲线上的点来判断振动

方向

知识点三、求解波的图像与振动图像综合类问题

知识点四、波的多解问题

1.造成波动问题多解的主要因素

(1)周期性

①时间周期性:时间间隔Δt与周期T的关系不明确。

②空间周期性:波传播的距离Δx与波长λ的关系不明确。

(2)双向性

①传播方向双向性:波的传播方向不确定。

②振动方向双向性:质点振动方向不确定。

2.解决波的多解问题的思路

一般采用从特殊到一般的思维方法,即找出一个周期内满足条件的关系Δt或Δx,

若此关系为时间,则t=nT+Δt(n=0,1,2,…);若此关系为距离,则x=nλ+Δx(n=0,

1,2,…)。

知识点五、波的干涉

题型一:机械波的传播方向

【例1】(2024•郫都区校级模拟)一列简谐横波沿x轴方向传播,在t=0.6s时刻的波形图如图甲所

示,此时质点P的位移为+2cm,质点Q的位移为﹣2cm,波上质点A的振动图像如图乙所示,

下列说法正确的是()

A.该简谐横波沿x轴负方向传播

B.该简谐横波的波速为20m/s

C.质点Q的振动方程为y=4sin(2.5t)(cm)

π+3

D.t时,质点P刚好在平衡位置

11

【解=答1】5解�:A、由质点A的振动图像可知,在t=0.6s时刻,质点A正在平衡位置向下振动,

根据“同侧法”可知,该简谐横波沿x轴正方向传播,故A错误;

B、由甲图可知,该波的波长为=3×4m=12m,根据图乙可知该波的周期为:T=1.0s﹣0.2s=

0.8sλ

所以该波的波速为:vm/s=15m/s,故B错误;

�12

==

C、根据y=Asin(t+�)=0A.8sin()可知,y=Asin(2.5t+),其中A=4cm,在t=

2�

ωφ�+�πφ

0.6s时,Q点的位移为y=﹣2cm,代入�解得:;所以质点Q的振动方程为y=4sin(2.5t)

��

(cm),故C正确;φ=3π+3

D、t时,即波从图甲继续向右传播Δts﹣0.6ss,此过程中波向右传播的距离为Δx

11112

=�==

=vΔt15m=2m,所以此时P位于波峰1,5故D错误1。5

2

故选:=C。15×15

【变式1-1】(2024•武汉模拟)图(a)是一列沿x轴方向传播的简谐横波在t=4s时的波形图,M、

N是介质中的两个质点,其平衡位置分别位于x=2m、x=8m处,图(b)是质点N的振动图像。

下列说法正确的是()

A.波沿x轴负方向传播

B.波的传播速度大小为0.5m/s

C.t=5s时,M、N的速度大小相等,方向相同

D.t=7s时,M、N的加速度大小相等,方向相反

【解答】解:A、t=4s时N质点向下振动,根据“同侧法”可知波沿x轴正方向传播,故A错

误;

B、根据图像可知波长为=8m,周期为T=8s,波的传播速度大小为:vm/s=1m/s,故B

�8

错误;λ=�=8

C、质点N的振动方程为:yN=Asin,质点M的振动方程为:yM=Asin()

2�2��

��−

��2

t=5s时,yN,向下振动;yM,向下振动;

22

距离平衡位置=等−距2离�两点速度大小相等=,2故�M和N速度相同,故C正确;

D、t=7s时,yN′,yM′,根据牛顿第二定律可得:a可知二者加速度大

22−𝑘

小相等、方向相同,=−故2D�错误。=−2�=�

故选:C。

【变式1-2】(2024•道里区校级模拟)一列横波在某介质中沿x轴传播,如图甲所示为t=1s时的波

形图,如图乙所示为x=4m处的质点N的振动图像,已知图甲中L、M、N两质点的平衡位置分

别位于xL=2m、xM=3m、xN=4m,则下列说法正确的是()

A.该波应沿x轴负方向传播

B.t=1.5s时质点L的加速度为零

C.在t=0.5s时刻,质点L的位移为20cm

D.从t=0s时刻到t=1.5s时刻,质点M通过的路程为60cm

【解答】解:A、由图乙可知,质点N在t=1s时刻沿y轴负方向运动,在甲图上,根据“上下

坡法”可知该波沿x轴正方向运动,故A错误;

B、根据“上下坡法”可知t=1s时刻,质点L沿y轴正方向运动。由图可知周期T=2s,从t=

1s时刻到t=1.5s时间经历时间Δt=1.5s﹣1s=0.5s,则t=1.5s时质点L到达波峰,加速度最

大,故B错误;=4

C、在t=0.5s时刻,即t=1s时刻之前的时刻,质点L位于波谷,位移为﹣20cm,故C错误;

D、从t=0时刻到t=1.5s时刻,M质点振4动时间为T,质点M通过的路程为s=3A=3×20cm

3

=60cm,故D正确。4

故选:D。

【变式1-3】(2024•合肥三模)如图甲所示为一列沿x轴传播的简谐横波,在t=2s时的波形图,P、

Q是平衡位置分别位于x=1.5m和x=2.75m处的两个质点,质点P的振动图像如图乙所示,则

下列说法正确的是()

A.波沿x轴正方向传播

B.波传播的速度大小为2m/s

C.当P位于波谷时,质点Q的位移为3cm

D.当P沿y轴负方向运动时,Q一定沿y2轴正方向运动

【解答】解:A、由图乙可知,t=2s时,质点P正沿y轴负方向运动,根据“同侧法”可知,波

沿x轴负方向传播,故A错误;

B、波传播的速度大小为:,故B错误;

�2

�==�/�=0.5�/�

C、Q与右侧波峰之间的水平距�离为4:Δx=3m﹣2.75m=0.25m,而m=0.5m

11

�=×2

故Q点的振动方程为:y=6sin()cm=6sin()cm4=6sin4()cm

2�2����

�+��+�+

根据波形图可知,将波形沿x轴负方�向移动0.5m的距离,4此时P4点在波谷,即波2向左4传播t′,

=

则此时Q的位移为:y=6sin()cm=3cm,故C正确;4

��

×1+2

D、由于P、Q水平距离并不等2于半波长4的奇数倍,因此两质点的振动方向并不一定相反,故D

错误。

故选:C。

题型二:机械波的图像分析

【例2】(2024•聊城二模)甲、乙两列机械波在同一种介质中沿x轴相向传播,甲波源位于O点,

乙波源位于x=8m处,两波源均沿y轴方向振动。在t=0时刻甲形成的波形如图a所示,此时

乙波源开始振动,其振动图像如图b所示。已知乙波的传播速度v乙=2.0m/s,质点P的平衡位置

处于x=5m处。若两波源一直振动,则下列说法正确的是()

A.甲波的周期为2s

B.在t=2.0s时,质点P开始振动

C.在t=3.0s时,质点P处于平衡位置且向y轴负方向振动

D.在0~3.5s这段时间内质点P运动的路程为42cm

【解答】解:A、甲、乙两列机械波在同一种介质中传播,两列波传播速度大小相等。由图可知,

甲波的波长为2m,所以甲波的周期为

T甲s=1s,故A错误;

2

==

B、当乙�波传2.播0到P点时,质点P开始振动,所用时间,则在t=1.5s时,质点

�3

P开始振动,故B错误;�=�=2�=1.5�

C、在t=3.0s时,乙波在P点的振动形式为经过平衡位置,且向下振动,而甲波在P点的振动形

式也是经过平衡位置向下振动,所以在t=3.0s时,质点P处于平衡位置且向y轴负方向振动,

故C正确;

D、由于两波源振动步调相反,P点到两波源的波程差Δx=4m﹣3m=1m,即半波长,所以P点

为振动加强点,其振幅为A=A甲+A乙=4cm+3cm=7cm,所以在0~3.5s这段时间内,质点P的

路程为s=2A乙+6A=2×3cm+6×7cm=48cm,故D错误。

故选:C。

【变式2-1】(2024•龙凤区校级模拟)如图所示,实线是沿x轴传播的一列简谐横波在t=0时刻的

波形图,虚线是这列波在t=2s时刻的波形图。已知该波的波速是v=8m/s,根据图形,则下列说

法正确的是()

A.该横波若与频率为1.5Hz的波相遇可能发生干涉

B.t=1s时刻,x=2m处的质点位于平衡位置向y轴负方向振动

C.t=2.75s时刻x=4m处的质点位移为

D.从t=2s到t=2.75s的时间内,x=4m2处3的��质点通过的路程为

【解答】解:A、由波形图可知波长=12m(4+23)��

λ

则波的周期为:,代入数据可得:T=1.5s

�=

频率为:,代入�数据可得:

12

所以与频率�=为�1.5Hz的波相遇不可�能=发3生𝐻干涉,故A错误;

B、从t=0到t=2s,波传播的距离为:Δx=vt,代入数据解得:

4

��=16�=�

根据平移法可知,该波一定沿x轴负方向传播;经过t=1s时间,波传播的距离3为:Δx1=vt1,

代入数据解得:

12

根据波形平移法�可�知=,8t=�1=s时3�x=10m处的振动传到x=2m处,则此时x=2m处的质点位于平

衡位置向y轴正方向振动,故B错误;

C、x=4m处的质点振动方程为:y=﹣Asint

代入数据可得:ω

4�

�=−��𝑠�(��)

故t=2.75s时刻x=4m处的3质点位移为:,故C正确;

4�11

�2.75=−4�𝑠(×)��=23��

D、从t=2s到t=2.75s的时间内,由于34

半个周期内所有质点的路程都为2A,即��=0.75�=2

s=2A,代入数据解得:s=8cm,故D错误。

故选:C。

【变式2-2】(2024•辽宁模拟)地震波既有纵波也有横波。某次地震时,震源正上方60km处地面上

的地震检测仪先监测到地面上下振动,5s后地面左右晃动。在监测中获得了一列沿x轴正方向传

播的地震横波的波动图像,t1=0时刻的波形如图中实线所示,t2=0.15s时刻的波形如图中虚线

所示,已知该地震横波的周期T>0.15s,假设纵波与横波频率相等,则()

A.地震横波波速比纵波的快

B.地震横波的波速为3km/s

C.地震横波的周期为0.6s

D.地震纵波的波长为1.2km

【解答】解:A、地震波中的纵波比横波先到达地面,所以纵波的速度快,故A错误;

BC、由波形图可知地震横波的波长=800m,地震横波沿x轴正方向传播,由波形图可得Δt=t2

λ

−t1=(n)T,(n=0、1、2……)

3

又因:T>+04.15s,可得n=0,解得:T=0.2s

地震横波传播速度为:v4000m/s

�800

==�/�=

D、设纵波的波速为v′,则�有0.2,代入数据解得v′=6000m/s

ℎℎ

−=5�

根据波速公式得纵波的波长′�=v′�'T=6000×0.2m=1200m=1.2km,故D正确。

故选:D。λ

【变式2-3】(2024•镜湖区校级二模)如图所示,两个振动频率均为0.5Hz的波源,分别位于x=﹣

0.2m和x=1.2m处,产生的简谐横波相向传播,振幅均为A=2cm,图示为两列波t=0时刻波形

图,x=0.2m和x=0.8m的P、Q两质点此刻刚好从平衡位置开始振动。则下列判断正确的是

()

A.两列波的传播速度均为v0=0.2cm/s,且波源起振方向均沿y轴负方向

B.t=0时刻,x=0处的质点处于平衡位置向y轴正方向运动,x=0.1m处的质点处于负的最大

位移处,且向y轴正方向运动

C.t=4.5s时刻,x=0.5m处的质点M正好从平衡位置向y轴正方向运动

D.M点开始振动后做最大位移始终为2cm、周期为2s的简谐运动

【解答】解:A、由图像可知,两列波波长均为:=0.4m

周期均为:THz=2sλ

11

==

所以波速均为:�v0=0.5f=0.4×0.5m/s=0.2m/s

λ

根据同侧法可判断出质点的振动方向,由于两列简谐横波分别沿x轴正方向和负方向传播,可知

质点P、Q均沿y轴负方向运动,故A错误;

B、根据同侧法可判断出x=0处的质点处于平衡位置向y轴正方向运动,x=0.1m处的质点处于

负的最大位移处,瞬时速度为零,故B错误;

D、依据叠加原则,M点开始振动后,M点振动加强,可知M点做最大位移为4cm,周期仍为

2s的简谐运动,故D错误;

C、由图可知,0时刻,x=0.5m处的质点M到两波前的距离均为0.3m,结合上述可知,两列波

传到M的时间为:

3

�=1.5�

当t=1.5s时,两列波4都恰好传到质点M,在t=4.5s时刻,质点M振动的时间:

��=4.5�−1.5�=

3

M2�已经振动一个半周期,结合叠加原则,可知t=4.5s时M点处于平衡位置向y轴正方向运动,

故C正确。

故选:C。

题型三:波的干涉问题

【例3】(2024•雨花区校级模拟)现在的智能手机大多有“双MIC降噪技术”,简单说就是在通话时,

辅助麦克风收集背景音,与主麦克风音质信号相减来降低背景噪音。图甲是原理简化图,图乙是

理想状态下的降噪过程,实线表示环境噪声声波,虚线表示降噪系统产生的等幅降噪声波,则下

列说法正确的是()

A.降噪过程应用的是声波的衍射原理

B.理想状态下,降噪声波与环境噪声声波的传播速度大小相等,波长相等

C.P点处的质点经过一个周期振动所产生的路程为4A(A为降噪声波的振幅)

D.P点处的质点经过一个周期向外迁移的距离为一个波长

【解答】解:AB.由图可看出,理想状态下降噪声波与环境声波波长相等,波速相等,则频率相

同,叠加时产生干涉现象,由于两列声波等幅反相,振动减弱,起到降噪作用,所以降噪过程应

用的是声波的干涉原理,故A错误,B正确;

C.图乙所示,此时介质中的质点P处于平衡位置,但因为两列声波等大反向,所以合振幅为零,

故质点P静止不动,路程为零,故C错误;

D.波传播时,质点不随波移动,只在平衡位置附近振动,则P点并不随波移动,故D错误。

故选:B。

【变式3-1】(2024•青山湖区校级模拟)两个步调相同的相干波源S1、S2上、下振动,波在水平面

内传播,形成了如图所示的干涉图样,其中实线表示波峰,虚线表示波谷。若两列波的振幅分别

为A1=5cm,A2=10cm,下列说法中正确的是()

A.质点a始终保持静止不动

B.质点b的位移始终大于质点d的位移

C.质点b与质点c的振动始终加强

D.任意时刻,质点c和质点d在竖直方向上的高度差不超过15cm

【解答】解:A、质点a为两波源连线的中垂线上,到两波源的距离相等,且两波源振动完全相

同,故质点a为振动加强点,故A错误;

B、质点b是波峰与波峰相遇,是振动加强点,质点d是波峰与波谷相遇,所以d为振动减弱点,

但两点的位移在变化,质点b的位移不一定大于质点d的位移,故B错误;

C、质点b是波峰与波峰相遇,质点c是波谷与波谷相遇,它们均属于振动加强点,振动始终加

强,故C正确;

D、质点c是振动加强点,振幅最大,为两波振幅之和15cm,质点d为振动减弱点,振幅最小,

为两波振幅之差5cm,d在波峰,c在波谷,则此时d、c两质点的竖直高度差最大为20cm,故D

错误。

故选:C。

【变式3-2】(2024•龙凤区校级模拟)P、Q两波源分别位于x轴﹣10m和10m处,产生的两列简谐

横波分别沿x轴正方向和负方向传播,振幅分别为15cm和30cm。t=0时刻两波源同时开始起振,

t=3s时的波形图如图所示,此刻平衡位置在x轴﹣4m和4m处的两质点刚要开始振动。质点M、

N的平衡位置分别为坐标原点和x=2m处,则()

A.两波源的起振方向均沿y轴负方向

B.两列简谐横波的波速均为4m/s

C.0~5s内质点N运动的路程为30cm

D.0~10s内质点M运动的路程为4.5m

【解答】解:A、根据波形平移法可知,t=3s时x=﹣4m和x=4m两处的质点的起振方向均沿

y轴正方向,则两波源的起振方向均沿y轴正方向,故A错误;

B、根据题意可知两列简谐横波的波速均为

��

代�=入�数�据解得v=2m/s

故B错误;

C.由图像可知两波的波长均为=4m,则周期为

λ

代�=入�数据解得T=2s

t=3s时,x=﹣4m和x=4m两处的振动传到质点N所用的时间分别为

1

1��

��=�

��2

��2=

代入数据�解得Δt1=3s,Δt2=1s

可知0~5s内质点N只由右边波源引起振动了1s,由于

1

则1�0=~25�s内质点N运动的路程为

s=2AQ=2×30cm=60cm

故C错误;

D、t=3s时,x=﹣4m和x=4m两处的振动传到质点M所用时间均为

��

代�入�=数据�解得Δt=2s

可知t=5s时质点M开始振动,且两波源的起振方向相同,周期相同,可知质点M为振动加强

点,振幅为

A′=15cm+30cm=45cm

由于

2.5T=10s﹣5s=5s

则0~10s内质点M运动的路程为

s′=2.5×4A′=450cm=4.5m

故D正确。

故选D。

【变式3-3】(2024•镇海区校级模拟)如图所示,在某均匀介质中存在两个点波源S1和S2,它们沿

z方向振动,垂直纸面向外为z轴正方向。其中S1位于,,处,其振动方程为

;S2位于,,处,其振动方(程−为3�00)。已知�波=

��

速0.1为�𝑠4(01m0/�s,�+下3列)(说�法)正确的是((3�0)0)�=0.1�𝑠(10��−6)(�)

A.波源S1的相位比波源S2的相位落后

B.P(0,2m,0)处质点的振幅为0.2m2

C.,,处为振动减弱处

D.�t=(−0时3刻�波源2�S1和0)S2的加速度方向相同

【解答】解:A.根据振动方向可知波源S1的相位比波源S2的相位超前

���

+=

故3A6错误2;

B.P处质点到两波源的距离差为0,由于两波源的相位差,根据波的叠加原理,可得P处质点振

幅为0.1m,故B错误;2

C.由振动图2像可知周期为

Ts

2�1

Q=处�质点=到5两波源的距离差为

Δxm﹣2m=2m

22

波源=的振(2动3传)到+2Q处所需时间差为

Δt0.05s

���

===

结合两�波源的相位4差,可知Q(m,2m,0)处为振动减弱处,故C正确;

−3

D.t=0时刻波源S1和2S2的位移相反,则加速度方向相反,故D错误。

故选:C。

题型四:非常规波的传播与干涉问题

【例4】(2024•乐清市校级三模)如图所示为某水池的剖面图,A、B两区域的水深分别为hA、hB,

其中hB=2.5m,点O位于两部分水面分界线上,M和N是A、B两区域水面上的两点,OM=4m,

ON=7.5m。t=0时M点从平衡位置向下振动,N点从平衡位置向上振动,形成以M、N点为波

源的水波(看作是简谐横波),两波源的振动频率均为1Hz,振幅均为5cm。当t=1s时,O点开

始振动且振动方向向下。已知水波的波速跟水深的关系为,式中h为水深,g=10m/s2。

下列说法正确的是()�=�ℎ

A.区域A的水深hA=2.0m

B.A、B两区域水波的波长之比为5:4

C.t=2s时,O点的振动方向向下

D.两波在相遇区域不能形成稳定的干涉

【解答】解:A、当t=1s时,O点开始振动且振动方向向下,说明经过1s的时间M点的振动传

播到了O点,则水波在区域A的传播速度大小为vA4m/s,根据水波的波速跟水

𝑀4

==�/�=

深的关系为,可得A区域的水深为hA=1.6m,�故A1错误;

�=�ℎ

B、根据水波的波速跟水深的关系为可得A、B两区域水波的波速之比为

��ℎ�

�=�ℎ==

��ℎ�

,因为两波源的振动频率均为1Hz,根据v=f可得A、B两区域水波的波长之比为4:

1.64

5,2故.5B错5误;

C、由题知,波的周期为T,水波在区域B的波速大小为vB

11

==�=1�=�ℎ�=10×2.5�/

5m/s,所以N点的振动传�播到1O点的时间为t',所以在t=2s时,M点的

��7.5

�===�=1.5�

振动在O点已经振动了一个周期,即有M点引起的振��动方5向为向下,由N点引起的振动已经振

动了0.5s,因为N点的起振方向是向上,所以在t=2s时,N点在O点引起的振动方向也是向下,

所以在t=2s时O点的振动方向向下,故C正确;

D、虽然他们在两个区域的波速不等,但是因为两列波的频率相同,所以仍能在相遇区域形成稳

定的干涉,故D错误。

故选:C。

【变式4-1】(2024•南昌三模)如图所示为水池某时刻的水波图样,S1、S2为水池边缘的两个波源,

将水波视为简谐横波,实线为波峰,虚线为波谷,此时S1、S2均处在波谷位置。可以通过调节波

源S1的振动频率,使两波源的振动完全相同,在水面上形成稳定干涉图样。已知波源S2振动形

成的水波波长为20cm,波速为40cm/s,两列波的振幅均为5cm,两列波的传播速度大小相同,

S1、S2两点之间的距离为100cm,S1、S2、P三点在同一水平面上,且刚好构成一个直角三角形,

∠S1S2P=53°,sin53°=0.8。Q为两波源连线的中点,则下列判断正确的是()

A.将波源S1的振动频率调高后形成稳定干涉图样

B.形成稳定干涉后,S1、S2连线上共有8个振动加强点

C.形成稳定干涉后,P点处质点振动的振幅为5cm

D.未调节波源S1的振动频率时,Q点从平衡位置振动1.25s后通过的路程为1m

【解答】解:A、由图可知,波源S1形成的波长大,则频率小,要形成稳定干涉图样,则频率要

与S2相同,所以要将频率调高,故A正确;

B、由题意可知振动加强点到两波源的距离为波长的整数倍,结合题意可知,则有:

x1+x2=100cm,|x1﹣x2|=20ncm,

可知分别距离S1为10cm,20cm,30cm,40cm,50cm,60cm,70cm,80cm,90cm共有9个振

动加强点,故B错误;

C、P点距离两波源的距离差

Δx=100sin53°﹣100cos53°,

代入数据解得:Δx=20cm,

所以P点是振动加强点,振幅为10cm,故C错误;

D、未调节波源S1振动频率时,Q点振动周期未知,故Q点从平衡位置振动1.25s后通过的路程

不能确定是否为1m,故D错误。

故选:A。

【变式4-2】(2024•宁波模拟)在某水平均匀介质中建立如图所示的三维直角坐标系,xOy平面水平。

在x轴上的两个波源S1、S2的坐标分别为x1=﹣9m、x2=16m,S1、S2的振动方程分别为z1=

10sin(2t)cm、。若两波均从平衡位置向上起振,且t=0时刻,S1刚开

π�2=8�𝑠(2��+)��

始振动,S2首次到达波峰处,两列波2的波速均为4m/s,传播过程中能量损耗不计。y轴上P点的

坐标为y=12m,则下列说法正确的是()

A.两波均传至O点后,O点振幅为18cm

B.S1波提前S2波1.25s传至P点

C.t=5.25s时,P点向+z方向振动

D.0~5.25s内,质点P通过的路程为76cm

【解答】解:A.根据已知条件,两波源的振动周期均为

2�2�

根�=据波�长=与2�波�速=的1�关系有

解�=得�

=vT=4×1m=4m

λ

依题意,t=0时刻,波源S1刚开始振动,波源S2的振动的波前已经沿x轴负方向传播了,即位

于x=15m处,坐标原点O到两个波前的路程差为4

可知叠加后使O点振动减弱,此刻O点处的质点的振��幅=为15�−9�=6�=3×2

A=A1﹣A2=10cm﹣8cm=2cm,故A错误;

B.由几何关系

22

�1�=9+12�=15�

22

2

S�1�波=提前16S2+传1至2P�点=的20时�间为

,故B错误;

(�2�−4)−�1�(20−1)−15

C��D=.波源S1�的波前传=到P点4的时间�为=1�

�1�15

�1==�=3.75�

波源S�2的波4前传到P点的时间为

�2�−4

220−1

�由此=可知�,0=~34.75s�内=P4.点75未�振动,3.75~4.75s内P点路程为

s1=4A1=4×10cm=40cm

4.75~5.25s内两列波在P点叠加,由

2�1

可��知'=P(点�为�−振4动)加−强�点�=,振(20幅−为1)�−15�=4�=�

A=A1+A2=10cm+8cm=18cm

该段时间内的路程为

s2=2A'=2×18cm=36cm

则0~5.25s内,质点P通过的路程为

s=s1+s2=40cm+36cm=76cm

t=5.25s时,波源为S1的波已经在P点振动了

3

��1=5.25�−3.75�=1.50�=�

即该波的平衡位置恰好传到P点2,且沿﹣z方向振动,同理,波源为S2的波已经在P点振动了

21

即��该=波5的.2平5�衡−位4.置75恰�=好0传.5到0�P=点2,�且沿z轴负方向振动,由此可知,该时刻P点向﹣z方向振动,

故C错误,D正确。

故选:D。

【变式4-3】(多选)(2024•绍兴二模)如图所示,x=0与x=10m处有两个波源S1和S2均可以沿z

轴方向做简谐运动,两波源产生的机械波均能以波源为圆心在xOy平面内向各个方向传播,振动

周期均为T=2s,波速均为v=1m/s。t=0时刻波源S1开始沿z轴正方向振动,振幅A1=3cm;t

=2s时刻波源S2开始沿z轴负方向振动,振幅A2=5cm。下列说法正确的是()

A.t=8s时刻,x=5.5m处质点的位移为z=﹣8cm

B.在x轴上,x<0和x>10m区域都是振动的加强点

C.在x轴上,0<x<10m区间内一共有10个振动的加强点

D.以波源S1为圆心,分别以半径4.8m和5.2m画圆,则在这两个圆周上,振动的加强点的个数

相等

【解答】解:A、假设只有波源S1,波源S1的振动形式传播到x=5.5处所需时间为:,

15.5�

�=1�/�=5.5�

t=8s时,x=5.5m处的质点振动了(8﹣5.5)s=2.5s=T,波源S1起振方向沿z轴正方向,

1

+�

故x=5.5m处的质点的起振方向也沿z轴正方向,可得t=48s时,x=5.5m处质点的位移为z1=

3cm。

同理,假设只有波原S2,波源S2的振动形式传播到x=5.5处所需时间为:

110�−5.5�

�=2�+1�/�=

,t=8s时,x=5.5m处的质点振动了(8﹣6.5)s=1.5s,波源S2起振方向沿z轴负方向,

3

6.5�=�

故x=5.5m处的质点的起振方向也沿z轴负方向,可得t=84s时,x=5.5m处质点的位移为z2=

5cm。

根据波的叠加原理,可知t=8s时,x=5.5m处质点的位移为:z=z1+z2=3cm+5cm=8cm,故A

错误;

B、由:v=1m/s,T=2s,可得:=2m

波源S1比波源S2早起振2s,即一个λ周期,根据题意可知两波源振动步调相反。在x轴上,x<0

和x>10m区域内的x轴上各点到两波源的波程差均为10m=5.即波程差均等于波长的5倍,可

知故各点都是减弱点,故B错误;λ

C、在x轴上,0<x<10m区间内振动的加强点的波程差满足:Δx(2n+1)m,

则有:﹣10m<(2n+1)m<10m,解得n的取值为:﹣5、﹣4、﹣3、=﹣(22�、+﹣11)、20=、1、2、3、4,

一共有10个取值,故一共有10个振动加强点,故C正确;

D、以波源S1为圆心,分别以半径4.8m和5.2m画圆,如下图所示。

当以S1为圆心,以4.8m为半径的圆周上的Q点到两波源的距离之差的绝对值最小为Δx1=(10m

﹣4.8m)﹣4.8m=0.4m,P点到两波源的距离的绝对值之差最大为Δx2=10m

当以S2为圆心,以5.2m为半径的圆周上的Q'点到两波源的距离之差的绝对值最小为Δx1′=5.2m

﹣(10m﹣5.2m)m=0.4m,P'点到两波源距离之差的绝对值最大为Δx2′=10m

可见两种情况下圆周上各点到两波源的波程差的绝对值范围相同,所以振动加强点的个数相等,

故D正确。

故选:CD。

1.(多选)(2024•郑州一模)如图所示,波源O沿y轴做简谐运动,形成两列简谐横波,一列波

在介质Ⅰ中沿x轴正方向传播,另一列波在介质Ⅱ中沿x轴负方向传播。t=0时波形如图,此

时两列波分别传到x1=6m和x2=﹣4m处。t=1s时质点M位移不变,振动方向相反,已知波

源振动周期大于0.4s。则()

A.波源的起振方向沿y轴正方向

B.两列波传播的周期之比为3:2

C.波在介质Ⅱ中的传播速度可能为

32

�/�

D.的质点与M质点的振动3方向始终相反

14

�=−�

【解答】解3:A、t=0时,两列波分别传到x1=6m和x2=﹣4m处,由“同侧法”可知,波源的

起振方向沿y轴正方向,故A正确;

B、两列波是由同一波源的振动形成的,所以两列波传播的周期相同,故B错误;

C、t=1s时质点M位移不变,振动方向相反,则有:(n)T=1s,解得:Ts

21

+=2

波源振动周期大于0.4s,则周期可能为:T=1.5s或T=0.63s;�+3

Ⅱ区中的波长为:=2×4m=8m

λ

则波速为:v,所以波速可能为:vm/s或vm/s,不可能为,故C错误;

�164032

===�/�

D、在介质Ⅱ�中沿x轴负方向传播的3波,与M3质点的振动方向3相同的质点坐标为:

x1mm

�82

=−=−=−

与其振1动2方向1始2终相反3的质点与这个质点之间的距离是半波长的奇数倍,即Δx=(2k﹣1)4

(2k﹣1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论