版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省苏州市数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量且,则x值为().A.6 B.-6C.7 D.-72.已知集合,,若,则实数的取值范围是()A. B.C. D.3.函数的单调递减区间是A. B.C. D.4.函数的大致图象是()A. B.C. D.5.在直角坐标系中,已知,那么角的终边与单位圆坐标为()A. B.C. D.6.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.7.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是A. B.C. D.8.管理人员从一池塘内随机捞出40条鱼,做上标记后放回池塘.10天后,又从池塘内随机捞出70条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内鱼的总条数是()A.2800 B.1800C.1400 D.12009.同时掷两枚骰子,所得点数之和为的概率为A. B.C. D.10.已知圆与圆相离,则的取值范围()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与互相垂直,则点到轴的距离为__________12.已知扇形的圆心角为,半径为,则扇形的面积为______13.已知在上是增函数,则的取值范围是___________.14.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______15.已知函数是定义在上的奇函数,当时,,则的值为______16.已知幂函数在其定义域上是增函数,则实数___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,,(Ⅰ)求;(Ⅱ)求18.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由19.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.20.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分均值和方差;(2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率21.已知函数是上的奇函数.(1)求实数a的值;(2)若关于的方程在区间上恒有解,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用向量垂直的坐标表示可以求解.【详解】因为,,所以,即;故选:B.【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.2、A【解析】集合表示到的线段,集合表示过定点的直线,,说明线段和过定点的直线有交点,由此能求出实数的取值范围【详解】由题意可得,集合表示到的线段上的点,集合表示恒过定点的直线.∵∴线段和过定点的直线有交点∴根据图像得到只需满足,或故选A.【点睛】本题考查交集定义等基础知识,考查函数与方程思想、数形结合思想,是基础题.解答本题的关键是理解集合表示到的线段,集合表示过定点的直线,再通过得出直线与线段有交点,通过对应的斜率求解.3、A【解析】令,则有或,在上的减区间为,故在上的减区间为,选A4、A【解析】利用奇偶性定义可知为偶函数,排除;由排除,从而得到结果.【详解】为偶函数,图象关于轴对称,排除又,排除故选:【点睛】本题考查函数图象的识别,对于此类问题通常采用排除法来进行排除,考虑的因素通常为:奇偶性、特殊值和单调性,属于常考题型.5、A【解析】利用任意角的三角函数的定义求解即可【详解】因为,所以角的终边与单位圆坐标为,故选:A6、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.7、A【解析】解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.8、C【解析】由从池塘内捞出70条鱼,其中有标记的有2条,可得所有池塘中有标记的鱼的概率,结合池塘内具有标记的鱼一共有40条鱼,按照比例即得解.【详解】设估计该池塘内鱼的总条数为,由题意,得从池塘内捞出70条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:,又因为池塘内具有标记的鱼一共有40条鱼,所以,解得,即估计该池塘内共有条鱼故选:C9、A【解析】本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6种结果,而满足条件的事件是两个点数之和是5,列举出有4种结果,根据概率公式得到结果.【详解】由题意知,本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6=36种结果,而满足条件的事件是两个点数之和是5,列举出有(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到P=.【点睛】古典概型要求能够列举出所有事件和满足条件的事件发生的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体10、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法二、填空题:本大题共6小题,每小题5分,共30分。11、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.12、【解析】∵扇形的圆心角为,半径为,∴扇形的面积故答案为13、【解析】将整理分段函数形式,由在上单调递增,进而可得,即可求解【详解】由题,,显然,在时,单调递增,因为在上单调递增,所以,即,故答案为:【点睛】本题考查已知函数单调性求参数,考查分段函数,考查一次函数的单调性的应用14、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.15、1【解析】根据题意,由函数在(﹣∞,0)上的解析式可得f(﹣1)的值,又由函数为奇函数可得f(1)=﹣f(﹣1),即可得答案【详解】根据题意,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(﹣1)=2×(﹣1)3+(﹣1)2=﹣1,又由函数奇函数,则f(1)=﹣f(﹣1)=1;故答案为1【点睛】本题考查函数奇偶性的应用,注意利用奇偶性明确f(1)与f(﹣1)的关系16、【解析】根据幂函数定义,可求得a值,根据其单调性,即可得答案.【详解】因为为幂函数,所以,解得或,又在其定义域上是增函数,所以,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】两集合A,B的交集为两集合的相同的元素构成的集合,并集为两集合所有的元素构成的集合,补集为全集中除去集合中的元素,剩余的元素构成的集合试题解析:(Ⅰ)(Ⅱ)考点:集合的交并补运算18、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,所以,所以,即.19、(1)(2)这样规定公平,详见解析【解析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y.用表示抽取结果,可得,则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A,则,事件A由4个基本事件组成,故所求概率.(2)设“甲获胜”为事件B,“乙获胜”为事件C,则,.可得,即甲获胜的概率是,乙获胜的概率也是,所以这样规定公平.【点睛】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.20、(1)15,32.25(2)【解析】(1)由已知中的茎叶图,代入平均数和方差公式,可得得答案;(2)根据古典概型计算即可求解.【详解】(1)这8场比赛队员甲得分为:7,8,10,15,17,19,21,23故平均数为:,方差:.(2)从甲比赛得分在分以下的场比赛中随机抽取场,共有15中种不同的取法,其中抽到场都不超过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大型设备散热管生产线项目社会稳定风险评估报告
- 光伏运维助理培训教材
- 企业上市筹备方案及时间表
- 医用织物连续紫外线消毒线创新创业项目商业计划书
- 工业键盘项目可行性分析报告范文(总投资15000万元)
- 塑胶轨道玩具创新创业项目商业计划书
- 充电桩维护管理平台创新创业项目商业计划书
- 年产xxx农副产品烘干机项目可行性分析报告
- 床上用品自动化裁剪与缝制线创新创业项目商业计划书
- 现代建筑工程安全生产标准解读
- 建筑施工安全技术规程汇编
- 搜救犬培训知识课件
- 医院地震知识培训内容课件
- 中建永临结合做法选用图册2024
- 楼牌标识牌安装施工方案
- 小儿疼痛的评估及护理
- 超市服饰采购知识培训课件
- 蹲踞式跳远教学课件
- 医院医疗废物规范化管理
- 变电运维安全知识培训课件
- 卓越工程师能力体系构建与实战成果汇报
评论
0/150
提交评论