版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省十堰市第二中学2025-2026学年数学高一第一学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角度化成弧度为()A. B.C. D.2.函数的零点所在的区间是A. B.C. D.3.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的A.4倍 B.3倍C.倍 D.2倍4.已知为上的奇函数,,在为减函数.若,,,则a,b,c的大小关系为A. B.C. D.5.向量“,不共线”是“|+|<||+||”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知,,,则、、的大小关系为()A. B.C. D.7.如图所示,在中,D、E分别为线段、上的两点,且,,,则的值为().A. B.C. D.8.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},则集合A∩(∁UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}9.为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水()分档户年用水量综合用水单价/(元)第一阶梯(含)第二阶梯(含)第三阶梯以上A. B.C. D.10.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.在函数的图像上,有______个横、纵坐标均为整数的点12.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________13.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______14.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度.每户每月用电量电价不超过210度的部分0.5元/度超过210度但不超过400度的部分0.6元/度超过400度的部分0.8元/度15.已知幂函数在上为减函数,则实数_______16.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知实数是定义在上的奇函数.(1)求的值;(2)求函数的值域;(3)当时,恒成立,求实数的取值范围.18.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.19.设函数(且,)(1)若是定义在R上的偶函数,求实数k的值;(2)若,对任意的,不等式恒成立,求实数a的取值范围20.已知函数且若,求的值;若,求证:是偶函数21.已知集合(1)当时,求;(2)若“”是“”充分条件,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.2、B【解析】∵,,,,∴函数的零点所在区间是故选B点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得
这个也就是方程的根.由此可判断根所在区间.3、D【解析】由题意,求出圆锥的底面面积,侧面面积,即可得到比值【详解】圆锥的轴截面是正三角形,设底面半径为r,则它的底面积为πr2;圆锥的侧面积为:2rπ•2r=2πr2;圆锥的侧面积是底面积的2倍故选D【点睛】本题是基础题,考查圆锥的特征,底面面积,侧面积的求法,考查计算能力4、C【解析】由于为奇函数,故为偶函数,且在上为增函数.,所以,故选C.5、A【解析】利用向量的线性运算的几何表示及充分条件,必要条件的概念即得.【详解】当向量“,不共线”时,由向量三角形的性质可得“|+|<||+||”成立,即充分性成立,当“,方向相反”时,满足“|+|<||+||”,但此时两个向量共线,即必要性不成立,故向量“,不共线”是“|+|<||+||”的充分不必要条件.故选:A.6、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.7、C【解析】由向量的线性运算可得=+,可得,又A,M,D三点共线,则存在b∈R,使得,则可建立关于a,b的方程组,即可求得a值,从而可得λ,μ,进而得解【详解】解:因为,,所以,,所以,所以,又A,M,D三点共线,则存在b∈R,使得,所以,解得,所以,因为,所以由平面向量基本定理可得λ=,μ=,所以λ+μ=故选:C8、A【解析】先求出∁UB,再求A∩(∁UB)即可.【详解】解:由已知∁UB={2,5},所以A∩(∁UB)={2,5}.故选:A.【点睛】本题考查集合的交集和补集的运算,是基础题.9、B【解析】设户年用水量为,年缴纳税费为元,根据题意求出的解析式,再利用分段函数的解析式可求出结果.【详解】设户年用水量为,年缴纳的税费为元,则,即,当时,,当时,,当时,,所以,解得,所以艾世宗一家年共用水.故选:B10、B【解析】利用充分条件,必要条件的定义即得.【详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】由题可得函数为减函数,利用赋值法结合条件及函数的性质即得.【详解】因为,所以函数在R上单调递减,又,,,,且当时,,当时,令,则,综上,函数的图像上,有3个横、纵坐标均为整数的点故答案为:3.12、【解析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果13、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④14、410【解析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解.【详解】由题意,电费(元)关于用电量(度)的函数为:,即,当时,,若,,则,解得.故答案为:410.15、-1【解析】利用幂函数的定义列出方程求出m的值,将m的值代入函数解析式检验函数的单调性【详解】∵y=(m2﹣5m﹣5)x2m+1是幂函数∴m2﹣5m﹣5=1解得m=6或m=﹣1当m=6时,y=(m2﹣5m﹣5)x2m+1=x13不满足在(0,+∞)上为减函数当m=﹣1时,y=(m2﹣5m﹣5)x2m+1=x﹣1满足在(0,+∞)上为减函数故答案为m=﹣1【点睛】本题考查幂函数的定义:形如y=xα(其中α为常数)、考查幂函数的单调性与幂指数的正负有关16、【解析】求得长方体外接球的半径,从而求得球的表面积.【详解】由题知,球O的半径为,则球O的表面积为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)由是定义在上的奇函数,利用可得的值;(2)化简利用指数函数的值域以及不等式的性质可得函数的值域;(3)应用参数分离可得利用换元法可得,,转化为,,转化为求最值即可求解.【详解】(1)因为是定义在上的奇函数,所以对于恒成立,所以,解得,当时,,此时,所以时,是奇函数.(2)由(1)可得,因为,可得,所以,所以,所以,所以函数的值域为;(3)由可得,即,可得对于恒成立,令,则,函数在区间单调递增,所以当时最大为,所以.所以实数的取值范围是.【点睛】方法点睛:求不等式恒成立问题常用分离参数法若不等式(是实参数)恒成立,将转化为或恒成立,进而转化为或,求的最值即可.18、(1);(2).【解析】(1)利用商数关系及题设变形整理即得的值;(2)注意既是一个无理式,又是一个分式,那么化简时既要考虑通分,又要考虑化为有理式.考虑通分,显然将两个式子的分母的积作为公分母,这样一来,被开方式又是完全平方式,即可以开方去掉根号,从将该三角式化简.试题解析:(1)∵∴2分解之得4分(2)∵是第三象限的角∴=6分===10分由第(1)问可知:原式==12分考点:三角函数同角关系式.19、(1)1(2)【解析】(1)由函数奇偶性列出等量关系,求出实数k的值;(2)对原式进行化简,得到对恒成立,分和两种情况分类讨论,求出实数a的取值范围.【小问1详解】由可得,即对恒成立,可解得:【小问2详解】当时,有由,即有,且故有对恒成立,①若,则显然成立②若,则函数在上单调递增故有,解得:;综上:实数a的取值范围为20、(1)7;(2)见解析.【解析】根据题意,由函数的解析式可得,则,计算可得答案;根据题意,求出的解析式,由函数奇偶性的定义分析可得答案【详解】解:根据题意,函数,若,即,则;证明:根据题意,函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 燃气管道建设质量控制标准
- 电力施工队伍安全管理计划
- 中学教学研究团队成员选拔方案
- 新能源汽车柔性智能制造项目技术方案
- 中学英语语法专项训练测试卷
- 果蔬塑料包装筐生产线项目风险评估报告
- Android开发实战攻略与案例分析
- 乙烯操作工安全培训教材
- WMS操作员岗位异常情况处理流程
- Oracle云服务顾问客户满意度调查报告
- 上海财经大学:低空+发展研究报告(2025年)
- 物业活动策划方案题目
- 别墅设计平面介绍
- 安徽省安庆第一中学2026届化学高一第一学期期中综合测试试题含解析
- DB33-T 1455-2025 涉企增值服务工作指南
- 风电项目土地使用与征地管理方案
- 购买鸡鸭购销合同范本
- 《小额贷款公司监督管理暂行办法》测试竞赛考试练习题库(附答案)
- 中毒和窒息事故现场处置演练方案
- 2026云天化集团高层次人才校园招聘笔试考试参考试题及答案解析
- Unit 7 reading Family money management 课件-2024-2025学年译林版七年级英语上册
评论
0/150
提交评论