广西龙胜中学2025年高二数学第一学期期末达标检测试题含解析_第1页
广西龙胜中学2025年高二数学第一学期期末达标检测试题含解析_第2页
广西龙胜中学2025年高二数学第一学期期末达标检测试题含解析_第3页
广西龙胜中学2025年高二数学第一学期期末达标检测试题含解析_第4页
广西龙胜中学2025年高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西龙胜中学2025年高二数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果向量,,共面,则实数的值是()A. B.C. D.2.已知直线和直线互相垂直,则等于()A.2 B.C.0 D.3.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.4.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中学生中抽取容量为50的样本,则应从高三年级抽取的学生数为()A.10 B.15C.20 D.305.函数的定义域为,,对任意,,则的解集为()A. B.C. D.6.命题“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得7.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.508.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.9.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.1210.已知数列满足,且,,则()A. B.C. D.11.若椭圆的右焦点与抛物线的焦点重合,则椭圆的离心率为()A. B.C. D.12.下列说法错误的是()A.“若,则”的逆否命题是“若,则”B.“”的否定是”C.“是"”的必要不充分条件D.“或是"”的充要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知对任意正实数m,n,p,q,有如下结论成立:若,则有成立,现已知椭圆上存在一点P,,为其焦点,在中,,,则椭圆的离心率为______14.若是直线外一点,为线段的中点,,,则______15.若函数在[1,3]单调递增,则a的取值范围___16.已知椭圆的短轴长为2,上顶点为,左顶点为,左、右焦点分别是,,且的面积为,点为椭圆上的任意一点,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.18.(12分)已知椭圆的离心率为,右焦点F到上顶点的距离为.(1)求椭圆的方程;(2)是否存在过点F且与x轴不垂直的直线与椭圆交于A、B两点,使得点C()在线段AB的中垂线上?若存在,求出直线l:若不存在,说明理曲.19.(12分)在平面直角坐标系xOy中,已知椭圆C:的焦距为4,且过点.(1)求椭圆C的方程;(2)设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M,N两点,问是否存在直线l,使得F为的垂心(高的交点),若存在,求出直线l的方程:若不存在,请说明理由.20.(12分)经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到)(2)为保证在该时段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?21.(12分)已知等差数列的前项的和为,,.(1)求数列的通项公式;(2)设,记数列的前项和,求使得恒成立时的最小正整数.22.(10分)已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.2、D【解析】利用直线垂直系数之间的关系即可得出.【详解】解:直线和直线互相垂直,则,解得:.故选:D.3、B【解析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.4、C【解析】根据抽取比例乘以即可求解.【详解】由题意可得应从高三年级抽取的学生数为,故选:C.5、B【解析】构造函数,利用导数判断出函数在上的单调性,将不等式转化为,利用函数的单调性即可求解.【详解】依题意可设,所以.所以函数在上单调递增,又因为.所以要使,即,只需要,故选B.【点睛】本题考查利用函数的单调性解不等式,解题的关键就是利用导数不等式的结构构造新函数来解,考查分析问题和解决问题的能力,属于中等题.6、D【解析】的否定是,的否定是,的否定是.故选D【考点】全称命题与特称命题的否定【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定7、B【解析】由前项和公式直接作差可得.【详解】数列的前n项和(n∈N*),所以.故选:B.8、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A9、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.10、A【解析】由已知两个不等式,利用“两边夹”思想求得,然后利用累加法可求得【详解】∵,∴,∴,又,∴,即,∴故选:A【点睛】本题考查数列的递推式,由递推式的特征,采用累加法求得数列的项.解题关键是利用“两边夹”思想求解11、B【解析】求出抛物线的焦点坐标,可得出的值,进而可求得椭圆的离心率.【详解】抛物线的焦点坐标为,由已知可得,可得,因此,该椭圆的离心率为.故选:B.12、C【解析】利用逆否命题、命题的否定、充分必要性的概念逐一判断即可.【详解】对于A,“若,则”的逆否命题是“若,则”,正确;对于B,“”的否定是”,正确;对于C,“”等价于“或,∴“是"”的充分不必要条件,错误;对于D,“或是"”的充要条件,正确.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据正弦定理,结合题意,列出方程,代入数据,化简即可得答案.详解】由题意得:,所以,所以,解得.故答案为:14、【解析】根据题意得到,进而得到,求得的值,即可求解.【详解】因为为线段的中点,所以,所以,又因为,所以,所以故答案为:.15、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:16、【解析】根据的面积和短轴长得出a,b,c的值,从而得出的范围,得到关于的函数,从而求出答案【详解】由已知得,故,∵的面积为,∴,∴,又,∴,,∴,又,∴,∴.即的取值范围为.故答案为点睛】本题考查了椭圆的简单性质,函数最值的计算,熟练掌握椭圆的基本性质是解题的关键,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,T(0,1)﹒【解析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.18、(1)(2)存在,【解析】(1)由题意可得,,求得的值即可求解;(2)由(1)得,假设存在满足条件的直线:,代入椭圆方程消去可得、,由中点坐标公式可得中点的坐标,由求得的值即可求解.小问1详解】由题意可得,,,解得,,所以椭圆的方程为【小问2详解】由(1)得,假设存在满足条件的直线:,代入椭圆方程整理可得,设,,则,,可得,则线段的中点坐标为,所以,则,解得:,所以存在直线,且直线的方程为19、(1)(2)存在:【解析】(1)根据题意,列出关于a,b,c的关系,计算求值,即可得答案.(2)由(1)可得B、F点坐标,可得直线BF的斜率,根据F为垂心,可得,可得直线l的斜率,设出直线l的方程,与椭圆联立,根据韦达定理,结合垂心的性质,列式求解,即可得答案.【小问1详解】因为焦距为4,所以,即,又过点,所以,又,联立求得,所以椭圆C的方程为【小问2详解】由(1)可得,所以,因为F为垂心,直线BF与直线l垂直,所以,则,即直线l的斜率为1,设直线l的方程为,,与椭圆联立得,,所以,因为F为垂心,所以直线BN与直线MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又时,直线l过点B,不符合题意,所以,所以存在直线l:,满足题意.20、(1)当(千米/小时)时,车流量最大,最大值约为千辆/小时;(2)汽车的平均速度应控制在这个范围内(单位:千米/小时).【解析】(1)利用基本不等式可求得的最大值,及其对应的值,即可得出结论;(2)解不等式即可得解.【小问1详解】解:,(千辆/小时),当且仅当时,即当(千米/小时)时,车流量最大,最大值约为千辆/小时.【小问2详解】解:据题意有,即,即,解得,所以汽车的平均速度应控制在这个范围内(单位:千米/小时).21、(1)(2)1【解析】(1)先设设等差数列的公差为,由,列出方程组求出首项和公差即可;(2)由(1)先求出,再由裂项相消法求数列的前项和即可.【详解】解:(1)设等差数列的公差为,因为,,所以解得所以数列的通项公式为.(2)由(1)可知∴,∴,∴,∴的最小正整数为1【点睛】本题主要考查等差数列的通项公式,以及裂项相消法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论