北京爱迪(国际)学校八年级上册压轴题数学模拟试卷及答案_第1页
北京爱迪(国际)学校八年级上册压轴题数学模拟试卷及答案_第2页
北京爱迪(国际)学校八年级上册压轴题数学模拟试卷及答案_第3页
北京爱迪(国际)学校八年级上册压轴题数学模拟试卷及答案_第4页
北京爱迪(国际)学校八年级上册压轴题数学模拟试卷及答案_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京爱迪(国际)学校八年级上册压轴题数学模拟试卷及答案一、压轴题1.已知:如图1,直线,EF分别交AB,CD于E,F两点,,的平分线相交于点K.(1)求的度数;(2)如图2,,的平分线相交于点,问与的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作,的平分线相交于点,作,的平分线相交于点,依此类推,作,的平分线相交于点,请用含的n式子表示的度数.(直接写出答案,不必写解答过程)2.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线,,上,,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变的形状.如图2,,,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线,,上,且与之间的距离为1,与之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.3.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,,为折痕,折叠后的点落在或的延长线上,那么的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,点与点重合,,为折痕,折叠后的点落在或的延长线上,那么的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,,为折痕,折叠后的点落在或的延长线上左侧,且,求的度数;②把一张长方形的纸片按如图④所示的方式折叠,点与点重合,,为折痕,折叠后的点落在或的延长线右侧,且,求的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,,为折痕,设,,,求,,之间的数量关系.4.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如图①,若点,分别在边,上,则__________.(填>、<或=)(2)发现证明:如图②,将图①中的绕点旋转,当点在外部,点在内部时,求证:.(深入研究)(3)如图③,和都是等边三角形,点,,在同一条直线上,则的度数为__________;线段,之间的数量关系为__________.(4)如图④,和都是等腰直角三角形,,点、、在同一直线上,为中边上的高,则的度数为__________;线段,,之间的数量关系为__________.(拓展提升)(5)如图⑤,和都是等腰直角三角形,,将绕点逆时针旋转,连结、.当,时,在旋转过程中,与的面积和的最大值为__________.5.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=30°,则∠ACD的度数是度;拓展:如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别在CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP,垂足分别为D、E,若∠CBE=70°,求∠CAD的度数;应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连接AD、BE,若∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB=度.6.阅读并填空:如图,是等腰三角形,,是边延长线上的一点,在边上且联接交于,如果,那么,为什么?解:过点作交于所以(两直线平行,同位角相等)(________)在与中所以,(________)所以(________)因为(已知)所以(________)所以(等量代换)所以(________)所以7.如图,在等边中,线段为边上的中线.动点在直线上时,以为一边在的下方作等边,连结.(1)求的度数;(2)若点在线段上时,求证:;(3)当动点在直线上时,设直线与直线的交点为,试判断是否为定值?并说明理由.8.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF9.已知,在平面直角坐标系中,,,C为AB的中点,P是线段AB上一动点,D是线段OA上一点,且,于E.(1)求的度数;(2)当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值.(3)若,求点D的坐标.10.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.11.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.12.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.13.如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.(1)如图2,在等腰中,AE=BE,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.(2)如图3,在非等腰中,若四边形ABCD仍是互补等对边四边形,试问∠ABD=∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.14.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.求∠BDC的大小(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE的平分线交于点F,求∠BFC的大小(用含α的代数式表示);(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的平分线与∠GCB的平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).15.已知:MN∥PQ,点A,B分别在MN,PQ上,点C为MN,PQ之间的一点,连接CA,CB.(1)如图1,求证:∠C=∠MAC+∠PBC;(2)如图2,AD,BD,AE,BE分别为∠MAC,∠PBC,∠CAN,∠CBQ的角平分线,求证:∠D+∠E=180°;(3)在(2)的条件下,如图3,过点D作DA的垂线交PQ于点G,点F在PQ上,∠FDA=2∠FDB,FD的延长线交EA的延长线于点H,若3∠C=4∠E,猜想∠H与∠GDB的倍数关系并证明.16.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.17.探究发现:如图①,在中,内角的平分线与外角的平分线相交于点.(1)若,则;若,则;(2)由此猜想:与的关系为(不必说明理由).拓展延伸:如图②,四边形的内角与外角的平分线相交于点,.(3)若,,求的度数,由此猜想与,之间的关系,并说明理由.18.完全平方公式:适当的变形,可以解决很多的数学问题.例如:若,求的值.解:因为所以所以得.根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则;②若则;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.19.如图,在中,,过点做射线,且,点从点出发,沿射线方向均匀运动,速度为;同时,点从点出发,沿向点匀速运动,速度为,当点停止运动时,点也停止运动.连接,设运动时间为.解答下列问题:(1)用含有的代数式表示和的长度;(2)当时,请说明;(3)设的面积为,求与之间的关系式.20.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP=cm,CQ=cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1);(2),证明见解析;(3)【解析】【分析】(1)过作KG∥AB,交于,证出∥KG,得到,,根据角平分线的性质及平行线的性质得到,即可得到答案;(2)根据角平分线的性质得到,,根据求出,根据求出答案;(3)根据(2)得到规律解答即可.【详解】(1)过作KG∥AB,交于,∵,∴∥KG,,,,分别为与的平分线,,,∵,,,,则;(2),理由为:,的平分线相交于点,,,,即,,,,;(3)由(2)知;同理可得=,∴.【点睛】此题考查平行线的性质:两直线平行,内错角相等;平行公理的推论:平行于同一直线的两直线平行;角平分线的性质;(3)是难点,注意总结前两问的做题思路得到规律进行解答.2.(1);(2);(3)【解析】【分析】(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=BM,NQ=NC,∵PB=1,CQ=2,设PM=a,NQ=b,∴,,解得:,,∴CN=AM==,∴AB===;(3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,,∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,,即,解得:NP=,∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,,即,解得:QM=,∴AM==CN,∴PC=CN-NP=AM-NP=,在△BPC中,BP2+CP2=BC2,即BC=,∴AB=BC=.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.3.,;,;,.【解析】【分析】(1)①如图①知,得可求出解.②由图②知得可求出解.(2)①由图③折叠知,可推出,即可求出解.②由图④中折叠知,可推出,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,、,即可求得、.【详解】解:(1)①如图①中,,,,故答案为.②如图②中,,,故答案为.(2)①如图③中由折叠可知,,,,,;②如图④中根据折叠可知,,,,,,;(3)如图⑤-1中,由折叠可知,,;如图⑤-2中,由折叠可知,,.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.4.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM为△ADE中DE边上的高,∴AM=EM=MD,∴AM+BD=CM;故答案为:90°,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE的面积始终保持不变,△ADE与△ADC面积的和达到最大,∴△ADC面积最大,∵在旋转的过程中,AC始终保持不变,∴要△ADC面积最大,∴点D到AC的距离最大,∴DA⊥AC,∴△ADE与△ADC面积的和达到的最大为2+×AC×AD=5+2=7,故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.5.探究:30;(2)拓展:20°;(3)应用:120【解析】【分析】(1)利用直角三角形的性质依次求出∠A,∠ACD即可;(2)利用直角三角形的性质直接计算得出即可;(3)利用三角形的外角的性质得出结论,直接转化即可得出结论.【详解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案为:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案为120.【点睛】此题是三角形的综合题,主要考查了直角三角形的性质,三角形的外角的性质,垂直的定义,解本题的关键是充分利用直角三角形的性质:两锐角互余,是一道比较简单的综合题.6.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明,写出证明过程和依据即可.【详解】解:过点作交于,∴(两直线平行,同位角相等),∴(两直线平行,内错角相等),在与中,∴,()∴(全等三角形对应边相等)∵(已知)∴(等边对等角)∴(等量代换)∴(等角对等边)∴;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.7.(1)30°;(2)证明见解析;(3)是定值,.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,,,,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论.【详解】(1)是等边三角形,.线段为边上的中线,,.(2)与都是等边三角形,,,,,.在和中,;(3)是定值,,理由如下:①当点在线段上时,如图1,由(2)可知,则,又,,是等边三角形,线段为边上的中线平分,即.②当点在线段的延长线上时,如图2,与都是等边三角形,,,,,,在和中,,,同理可得:,.③当点在线段的延长线上时,与都是等边三角形,,,,,,在和中,,,同理可得:,∵,.综上,当动点在直线上时,是定值,.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.8.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.9.(1)45°;(2)PE的值不变,PE=4,理由见详解;(3)D(,0).【解析】【分析】(1)根据,,得△AOB为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC⊥AB,再证明△POC≌△DPE,根据全等三角形的性质得到OC=PE,即可得到答案;(3)证明△POB≌△DPA,得到PA=OB=,DA=PB,进而得OD的值,即可求出点D的坐标.【详解】(1),,∴OA=OB=,∵∠AOB=90°,∴△AOB为等腰直角三角形,∴∠OAB=45°;(2)PE的值不变,理由如下:∵△AOB为等腰直角三角形,C为AB的中点,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是线段OA上一点,∴点P在线段BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≅△DPE(AAS),∴OC=PE,∵OC=AB=××=4,∴PE=4;(3)∵OP=PD,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,∴△POB≌△DPA(AAS),∴PA=OB=,DA=PB,∴DA=PB=×-=8-,∴OD=OA−DA=-(8-)=,∴点D的坐标为(,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.10.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于s或2s,故答案为:s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.11.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则,解得∴直线PR为y=﹣x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.12.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【解析】【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.13.(1)见解析;(2)仍然成立,见解析【解析】【分析】(1)根据等腰三角形的性质和互补等对边四边形的定义可利用SAS证明△ABD≌△BAC,可得∠ADB=∠BCA,从而可推出∠ADB=∠BCA=90°,然后在△ABE中,根据三角形的内角和定理和直角三角形的性质可得∠ABD=∠AEB,进一步可得结论;(2)如图3所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G,F,根据互补等对边四边形的定义可利用AAS证明△AGD≌△BFC,可得AG=BF,进一步即可根据HL证明Rt△ABG≌Rt△BAF,可得∠ABD=∠BAC,由互补等对边四边形的定义、平角的定义和四边形的内角和可得∠AEB+∠DHC=180°,进而可得∠AEB=∠BHC,再根据三角形的外角性质即可推出结论.【详解】(1)证明:∵AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA=(180°−∠AEB)=90°−∠AEB,∴∠ABD=90°−∠EAB=90°−(90°−∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)∠ABD=∠BAC=∠AEB仍然成立;理由如下:如图3所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G,F,∵四边形ABCD是互补等对边四边形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+∠ADG=180°,∴∠BCA=∠ADG,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∠AGD=∠BFC,∠ADG=∠BCA,AD=BC∴△AGD≌△BFC(AAS),∴AG=BF,在Rt△ABG和Rt△BAF中,∴Rt△ABG≌Rt△BAF(HL),∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.【点睛】本题以新定义互补等对边四边形为载体,主要考查了全等三角形的判定与性质、等腰三角形的性质、三角形的内角和定理与三角形的外角性质以及四边形的内角和等知识,正确添加辅助线、熟练掌握上述知识是解题的关键.14.(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.【解析】【分析】(1)由三角形内角和可求∠ABC+∠ACB=180°﹣α,由角平分线的性质可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的内角和定理可求解;(2)由角平分线的性质可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性质可求解;(3)由折叠的性质可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.【详解】解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠BCD=∠ACB,∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;(2)∵∠ABC的平分线与∠ACE的平分线交于点F,∴∠FBC=∠ABC,∠FCE=∠ACE,∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,∴∠BFC=∠A=;(3)∵∠GBC的平分线与∠GCB的平分线交于点M,∴方法同(1)可得∠BMC=90°+,∵将△FBC以直线BC为对称轴翻折得到△GBC,∴∠G=∠BFC=,∴∠BMC=90°+.【点睛】此题考查三角形的内角和定理,三角形的外角等于与它不相邻的两个内角的和,角平分线的性质定理,折叠的性质.15.(1)见解析;(2)见解析;(3)猜想:∠H=3∠GDB,证明见解析.【解析】【分析】(1)作辅助线:过C作EF∥MN,根据平行的传递性可知这三条直线两两平行,由平行线的性质得到内错角相等∠MAC=∠ACF,∠BCF=∠PBC,再进行角的加和即可得出结论;(2)根据角平分线线定理得知,利用平角为180°得到∠DAE=90°,同理得,再根据四边形内角和180°,得出结论;(3)由(1)(2)中的结论进行等量代换得到3∠ADB=2∠E,并且两角的和为180°,由此得到两个角的度数分别为72°和108°,利用角的和与差得到∠HDA=36°,∠H=54°,由此得到倍数关系.【详解】(1)如图:过C作EF∥MN,∵MN∥PQ,∴MN∥EF∥PQ,∴∠MAC=∠ACF,∠BCF=∠PBC,∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC.(2)∵AD,AE分别为∠MAC,∠CAN的角平分线,∴,∴,于是∠DAE=90°同理可得:,由(1)可得:∵.(3)猜想:∠H=3∠GDB.理由如下:由(1)可知:,∵3∠C=4∠E,∴6∠ADB=4∠E,∴3∠ADB=2∠E,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG⊥DA,∴∠GDB=18°,∵∠FDA=2∠FDB,∴∠ADF=144°,∴∠HDA=36°,∵DA⊥AE,∴∠H=54°,∴∠H=3∠GDB.【点睛】考查平行线中角度的关系,学生要熟悉掌握平行线的性质以及角平分线定理,结合角的和与差进行计算,本题的关键是平行线的性质.16.(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解.【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∠FNK=∠FGH=90°,,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK,,MK=FN=2cm,.【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.17.(1)40°25°;(2)(或)(3)=【解析】【分析】(1)先根据两角平分线写出对应的等式关系,再分别写出两个三角形内角和的等式关系,最后联立两等式化解,将的角度带入即可求解;(2)由(1)可得,即可求解;(3)在与的平分线相交于点,可知,又因为,两直线平行内错角相等,得出,再根据三角形一外

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论